Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23693
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorFalcon, Rafael-
dc.contributor.authorPAPAGEORGIOU, Elpiniki-
dc.contributor.authorBello, Rafael-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2017-05-17T08:30:20Z-
dc.date.available2017-05-17T08:30:20Z-
dc.date.issued2017-
dc.identifier.citationINTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 85, p. 79-96-
dc.identifier.issn0888-613X-
dc.identifier.urihttp://hdl.handle.net/1942/23693-
dc.description.abstractRough Cognitive Networks are granular classifiers stemming from the hybridization of Fuzzy Cognitive Maps and Rough Set Theory. Such cognitive neural networks attempt to quantify the impact of rough granular constructs (i.e., the positive, negative and boundary regions of a target concept) over each decision class for the problem at hand. In rough classifiers, determining the precise granularity level is crucial to compute high prediction rates. Regrettably, learning the similarity threshold parameter requires reconstructing the information granules, which may be time-consuming. In this paper, we put forth a new multiclassifier system classifier named Rough Cognitive Ensembles. The proposed ensemble employs a collection of Rough Cognitive Networks as base classifiers, each operating at a different granularity level. This allows suppressing the requirement of learning a similarity threshold. We evaluate the granular ensemble with 140 traditional classification datasets using different heterogeneous distance functions. After comparing the proposed model to 15 well-known classifiers, the experimental evidence confirms that our scheme yields very promising classification rates.-
dc.description.sponsorshipThis work was supported by the Research Council of Hasselt University. The authors would like to thank the anonymous reviewers for their constructive remarks throughout the revision process.-
dc.language.isoen-
dc.rights© 2017 Elsevier Inc. All rights reserved.-
dc.subject.othermachine learning; granular computing; rough set theory; fuzzy cognitive maps; rough cognitive networks; ensemble learning-
dc.titleRough cognitive ensembles-
dc.typeJournal Contribution-
dc.identifier.epage96-
dc.identifier.spage79-
dc.identifier.volume85-
local.bibliographicCitation.jcatA1-
dc.description.notesNapoles, G (reprint author), Hasselt Univ, Fac Business Econ, Hasselt, Belgium. gonzalo.napoles@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.ijar.2017.03.011-
dc.identifier.isi000401396400006-
dc.identifier.urlhttps://www.researchgate.net/publication/315613667_Rough_Cognitive_Ensembles?ev=prf_high-
item.validationecoom 2018-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorFalcon, Rafael-
item.contributorPAPAGEORGIOU, Elpiniki-
item.contributorBello, Rafael-
item.contributorVANHOOF, Koen-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationNAPOLES RUIZ, Gonzalo; Falcon, Rafael; PAPAGEORGIOU, Elpiniki; Bello, Rafael & VANHOOF, Koen (2017) Rough cognitive ensembles. In: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 85, p. 79-96.-
crisitem.journal.issn0888-613X-
crisitem.journal.eissn1873-4731-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Rough Cognitive Ensembles.pdfPeer-reviewed author version607.07 kBAdobe PDFView/Open
a.pdf
  Restricted Access
Published version1.57 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.