Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23770
Title: 3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation
Authors: Jorge-Peñas, Alvaro
BOVE, Hannelore 
SANEN, Kathleen 
Vaeyens, Marie-Mo
Steuwe, Christian
Roeffaers, Maarten
AMELOOT, Marcel 
Van Oosterwyck, Hans
Issue Date: 2017
Source: Biomaterials, 136, pag. 86-97
Status: In Press
Abstract: To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 µm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling.
Notes: Van Oosterwyck, H (reprint author), Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300C Box 2419, Leuven, Belgium. marcel.ameloot@uhasselt.be; hans.vanoosterwyck@kuleuven.be
Keywords: large deformation; fibrillar hydrogel; second Harmonic Generation; traction force microscopy; non-rigid image registration
Document URI: http://hdl.handle.net/1942/23770
ISSN: 0142-9612
e-ISSN: 1878-5905
DOI: 10.1016/j.biomaterials.2017.05.015
ISI #: 000401816500007
Category: A1
Type: Journal Contribution
Validations: ecoom 2018
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

13
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

22
checked on Mar 29, 2024

Page view(s)

94
checked on Sep 7, 2022

Download(s)

52
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.