Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24084
Full metadata record
DC FieldValueLanguage
dc.contributor.authorECTORS, Wim-
dc.contributor.authorKOCHAN, Bruno-
dc.contributor.authorJANSSENS, Davy-
dc.contributor.authorBELLEMANS, Tom-
dc.contributor.authorWETS, Geert-
dc.date.accessioned2017-08-04T13:57:23Z-
dc.date.available2017-08-04T13:57:23Z-
dc.date.issued2017-
dc.identifier.citationShakshuki, Elhadi (Ed.). 8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International Conference on Sustainable Energy Information Technology, SEIT 2017, 16-19 May 2017, Madeira, Portugal BV, p. 225-232-
dc.identifier.issn1877-0509-
dc.identifier.urihttp://hdl.handle.net/1942/24084-
dc.description.abstractModeling people's behavior in e.g. travel demand models is an extremely complex, multidimensional process. However, the frequency of occurrence of day-long activity schedules obeys a ubiquitous power law distribution, commonly referred to as Zipf's law.1 This paper discusses the role of aggregation within the phenomenon of Zipf's law in activity schedules. Aggregation is analyzed in two dimensions: activity type encoding and the aggregation of individual data in the dataset. This research employs four datasets: the household travel survey (HTS) NHTS 2009, two six-week travel surveys (MobiDrive 1999 and Thurgau 2003) and a 24-week set of trip data which was donated by one individual. Maximum-likelihood estimation (MLE) and the Kolmogorov- Smirnov (KS) goodness-of-fit (GOF) statistic are used in the “PoweRlaw” R package to reliably fit a power law. To analyze the effect of aggregation in the first dimension, the activity type encoding, five different activity encoding aggregation levels were created in the NHTS 2009 dataset, each aggregating the activity types somewhat differently. To analyze aggregation in the second dimension, the analysis moves from study area-wide aggregated data to subsets of the data, and finally to individual (longitudinal) data.-
dc.description.sponsorshipThe authors would like to thank prof. dr. Kay Axhausen for providing the Mobidrive 199916 and Thurgau 200317 datasets. They are also thankful to the U.S. Department of Transportation, Federal Highway Administration, for making the NHTS 200915 data freely available. The authors thank the donor of the 24-week of individual trip data.-
dc.language.isoen-
dc.publisherElsevier Science BV-
dc.relation.ispartofseriesProcedia Computer Science-
dc.rights2017 The Authors. Published by Elsevier B.V.-
dc.subject.otherZipf-
dc.subject.otherpower law-
dc.subject.otheractivity schedules-
dc.subject.otherdata aggregation-
dc.subject.otheractivity type classes-
dc.titleZipf’s power law in activity schedules and the effect of aggregation-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsShakshuki, Elhadi-
local.bibliographicCitation.conferencedate2017 May 16-19-
local.bibliographicCitation.conferencename8th International Conference on Ambient Systems, Networks and Technologies (ANT-2017)-
local.bibliographicCitation.conferenceplaceMadeira, Portugal-
dc.identifier.epage232-
dc.identifier.spage225-
dc.identifier.volume109-
local.format.pages8-
local.bibliographicCitation.jcatC1-
dc.description.notesEctors, W (reprint author), Hasselt Univ, Transportat Res Inst IMOB, Agoralaan, B-3590 Diepenbeek, Belgium. wim.ectors@uhasselt.be-
local.publisher.placeSARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr109-
dc.identifier.doi10.1016/j.procs.2017.05.336-
dc.identifier.isi000414533000028-
local.bibliographicCitation.btitle8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International Conference on Sustainable Energy Information Technology, SEIT 2017, 16-19 May 2017, Madeira, Portugal-
local.uhasselt.internationalno-
item.validationecoom 2018-
item.contributorECTORS, Wim-
item.contributorKOCHAN, Bruno-
item.contributorJANSSENS, Davy-
item.contributorBELLEMANS, Tom-
item.contributorWETS, Geert-
item.fullcitationECTORS, Wim; KOCHAN, Bruno; JANSSENS, Davy; BELLEMANS, Tom & WETS, Geert (2017) Zipf’s power law in activity schedules and the effect of aggregation. In: Shakshuki, Elhadi (Ed.). 8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International Conference on Sustainable Energy Information Technology, SEIT 2017, 16-19 May 2017, Madeira, Portugal BV, p. 225-232.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1877-0509-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Ectors et al._ANT2017_openAccess (1).pdfPublished version1.33 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.