Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25654
Title: Canard Explosion Near Non-Liénard Type Slow–Fast Hopf Point
Authors: HUZAK, Renato 
Issue Date: 2018
Publisher: SPRINGER
Source: Journal of Dynamics and Differential Equations, 31 (2), p. 683-709.
Abstract: In this paper we study birth of canards near a smooth slow–fast Hopf point of non-Liénard center type which plays an important role in slow–fast codimension 3 saddle and elliptic bifurcations. We show that the number of limit cycles created in the birth of canards in such a slow–fast non-Liénard case is finite. Our paper is also a natural continuation of Dumortier and Roussarie (Discrete Contin Dyn Syst Ser S 2(4):723–781, 2009) where slow–fast Hopf points of Liénard type have been studied. We use geometric singular perturbation theory and the family blow-up.
Keywords: family blow-up; normal forms; singular perturbation theory; slow–fast Hopf point
Document URI: http://hdl.handle.net/1942/25654
ISSN: 1040-7294
e-ISSN: 1572-9222
DOI: 10.1007/s10884-018-9645-3
ISI #: WOS:000468343600004
Rights: © Springer Science+Business Media, LLC, part of Springer Nature 2018
Category: A1
Type: Journal Contribution
Validations: ecoom 2020
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
NonLienardHopfFinal.pdfPeer-reviewed author version726.74 kBAdobe PDFView/Open
Canard.pdf
  Restricted Access
Published version894.79 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.