Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25839
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWAGNER, Patrick-
dc.contributor.advisorIngebrandt, Sven-
dc.contributor.advisorTHOELEN, Ronald-
dc.contributor.authorSchwartz, Miriam-
dc.date.accessioned2018-04-11T09:19:21Z-
dc.date.available2018-04-11T09:19:21Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/1942/25839-
dc.description.abstractThe aim of this thesis was to establish different medically relevant bioassays on silicon nanowire field-effect transistor sensors (SiNW FET). In parallel to this doctoral thesis with biomedical and biosensing focus, another thesis work was done by a colleague, where new readout instruments and a circuit model description of the SiNW FETs and the amplifiers were elaborated. The SiNW FETs used in both thesis works were fabricated in the framework of a previous project. The nanoelectronic SiNW FET platform has unique features, like a label-free detection of biomolecules, an ultra-sensitive and highly specific response as well as a fast detection of the biomolecular binding reaction within some minutes. These beneficial attributes make this platform a promising technology for future healthcare monitoring and, in particular, for the usage in diagnostic applications, where a fast, sensitive, portable and early detection is very important and can save lives. In initial experiments, the working principle and the functionality of the SiNW FETs were verified by pH and conductivity measurements as well as by detecting the layer-by-layer deposition of polyelectrolyte multilayers. Afterwards, two types of medically relevant bioassays were established on the nanowire platform and on microsized, ion-sensitive field-effect transistors (ISFETs) as control sensors to compare micro- to nanoscale devices. In the first bioassay, DNA hybridization of short oligonucleotides on the sensor surfaces was detected. In initial tests, a synthetic 20 base pair (bp) DNA sequence was used to establish a robust assay. Afterwards, a 20 bp DNA sequence specific to Human Leukocyte Antigen-B27 (HLA-B27) was used towards biomedically relevant experiments. Carriers of the HLA-B27 allele have a higher risk to suffer from auto immune diseases, such as Morbus Bechterew, Morbus Reiter and other inflammatory disorders. In contrast to standard DNA-microarrays, which typically utilize fluorescence of previously labeled target analytes, the detection with the SiNW FET biosensors is direct and label-free. Therefore, electronic or electrochemical assays reduce costs and time. Secondly, protein bioassays were performed, in which the target protein binding to its specific antibody was measured. With electrochemical biosensors such as SiNW FETs, the detection of larger, globular biomolecules is more difficult than the detection of short DNA sequences. In the bioassay, the brain-derived neurotrophic factor (BDNF), which is reduced in Alzheimer, Parkinson’s and Huntington’s disease, was detected. In the human body, BDNF is present in serum, tears, saliva and liquor. The detection of BDNF was done in differently concentrated phosphate buffers and in Hank’s balanced salt solution. It was possible to measure clinically relevant concentrations with the SiNW FET biosensor. Moreover, the detected BDNF concentrations were lower than the limit-of-detection of a commercially available ELISA kit. Besides its higher sensitivity, the SiNW FET method presented in this thesis has further advantages compared to an ELISA assay: It is label-free so that no secondary antibody is necessary, fully-electronic, which means it could be miniaturized and integrated into a battery powered handheld device, and the results are available within some minutes depending on the affinity of the binding partners. The results obtained in this thesis indicate that the SiNW FET platform has a tremendous potential as a future point-of-care platform technology for biomedical applications. In a biomedical company, further research was done in highly concentrated buffer, synthetic and human serum on the nanowire-based platform. The obtained results were promising and some of them were published in a patent. For the practical experiments presented in this work, the SiNW FETs were fabricated and encapsulated such that they can electronically record the biomolecule binding at the solid-liquid interface in different liquid matrices. For the establishment of a bioassay on the sensors, the sensor surface had to be functionalized with a siloxane layer and modified with specific capture molecules as a bioreceptor layer. To avoid false-positive signals, free areas of the sensor surface were blocked with a suitable blocking agent. To verify that the experimental procedures of the assays were stable and reliable, optical controls were firstly established on bare glass or silicon surfaces and on non-functionalized nanowire chips. The electronic recordings were done in two different modes: Firstly, potentiometric DC detection was used by measuring the transfer characteristic of the SiNW FETs before and after the target binding. This detection scheme is used by most of the research groups in the silicon nanowire field. Upon binding of biomolecules to the SiNW FET surface, the typical shift of the transfer characteristic was observed, which was already reported before for ISFET and other silicon nanowire devices. The results obtained in this thesis work indicated that the SiNW FETs function similarly to long-channel field-effect transistor devices. Furthermore, the dimensions of the nanowires have a strong influence on the shape of the transfer characteristic curves and, with this, also on their sensitivity. This was not reported before in the research field. In DNA experiments, it was shown that in thinner wires the curve was steeper than in wider wires. The second detection method was an impedimetric AC mode, where the transistor transfer function, i.e. the frequency bandwidth, of the SiNW FETs was measured. The theory of the AC recording is still under discussion and latest experimental findings are presented. The transistor transfer function in general is the mathematical representation of the relation between the input and the output signals of a frequency-dependent system. Biomolecular interactions at the sensor surface lead to a change in their input impedance and, hence, to a change in the transistor transfer function spectrum. However, the experimental results demonstrate that various parameters have an influence on this recording mode. In case of the microscale ISFET devices, the transistor transfer function decreases after each biomolecule layer. This is in agreement with previously published observations. For the SiNW FET sensors, the results were not fully reliable, wherefore it was concluded that, besides the attachment of the biomolecules, also the charge type, the charge density and the conformation of the biomolecules might influence this readout mode. To derive further information and conclusions from the results of the protein bioassay, a multivariant data analysis was developed with the help of a custom-made MATLAB program. In doing so, the two previously mentioned readout principles were combined, since they can be measured simultaneously. Seven different parameters of the DC and AC readouts were evaluated and plotted against each other in a radar plot to allow a comparison of all variants. A classification model consisting of various decision trees was implemented. The purpose was to differentiate between the different experimental steps as well as between the different concentrations. Finally, the accuracy of the classification model was evaluated. So far, it is only feasible to verify an analyte by functionalizing the sensor surface with specific capture molecules. However, no further information of the target molecules, such as size, surface activity or conformation can be derived. Therefore, the ultimate goal of this multivariant data analysis is to create a library of various parameters in order to identify an unknown analyte and the corresponding characteristics by means of its structure, concentration, total charge, and charge distribution in future works. In conclusion, this thesis work demonstrates that it is possible to detect ultra-low concentrations of biomolecules (down to the fM regime) with the SiNW FET platform, which make it an interesting tool in different applications areas, in which the detection of very tiny concentrations is crucial. Because it was possible to detect BDNF as a target molecule, which is involved in different diseases, the SiNW FETs are a promising technology for the detection of other analytes related to medical disorders. This could be realized by changing the surface modification protocol of the sensors and by applying other, specific capture molecules. In future, more experimental studies need to be performed in human samples, such as serum, saliva or tears. It is assumed that the sensitivity of the SiNW FETs might be reduced in body fluids due to the various components of these liquids. However, by optimizing the surface modification and functionalization, it is expected that the SiNW FET platform can compete with commercially available ELISA tests or fluorescence microarrays. The differential readout of SiNW FETs in an array format offers the possibility to identify different target molecules, simultaneously. This property would be beneficial to detect multiple biomarkers at the same time for panel assays using multivariant recording with different parameters. It is well known in the biosensor field that many novel bioassays on electronic platforms are highly prone to false recordings caused by side influences from parameters such as temperature, pH and ionic strength variations in the detection matrix. The here developed method for multivariant data analysis of multiple, partly independent transducer principles might also be expanded to include these parameters on future multisensoric SiNW FET platforms. By this, the multivariant method offers many promising features for future point-of-care instruments.-
dc.description.sponsorshipBMBF: Bundesministerium für Bildung und Forschung-
dc.language.isoen-
dc.subject.othersilicon nanowire field-effect transistors; multivariant data analysis; DNA; BDNF; supervised machine learning; transistor transfer function; transfer characteristic-
dc.titleDetection of biomolecules using multivariant data analysis from silicon nanowire field-effect transistor arrays-
dc.typeTheses and Dissertations-
local.format.pages207-
local.bibliographicCitation.jcatT1-
dc.relation.references[1] I.G. Neizvestny, “Semiconductor Nanowire Sensors.” Russian Microelectronics, 38 (4), 223–238 (2009). [2] J.-R. Gong, “Label-Free Attomolar Detection Of Proteins Using Integrated Nanoelectronic And Electrokinetic Devices.” Small, 6 (8), 967–973 (2010). [3] S. Carrara, V. Bhalla, C. Stagni, L. Benini, A. Ferretti, F. Valle, A. Gallotta, B. Riccò, B. Samorì, “Label-Free Cancer Markers Detection By Capacitance Biochip.” Sensors and Actuators B: Chemical, 136 (1), 163–172 (2008). [4] M. Chiesa, P.P. Cardenas, F. Otón, J. Martinez, M. Mas-Torrent, F. Garcia, J.C. Alonso, C. Rovira, R. Garcia, “Detection Of The Early Stage Of Recombinational DNA Repair By Silicon Nanowire Transistors.” Nano Letters, 12 (3), 1275–1281 (2012). [5] Z. Liu, S. Tabakman, K. Welsher, H. Dai, “Carbon Nanotubes In Biology And Medicine: In Vitro And In Vivo Detection, Imaging And Drug Delivery.” Nano Research, 2 (2), 85–120 (2009). [6] Y. Zhang, Y. Guo, Y. Xianyu, W. Chen, Y. Zhao, X. Jiang, “Nanomaterials For Ultrasensitive Protein Detection.” Advanced Materials, 25 (28), 3802–3819 (2013). [7] J. Wang, “Electrochemical Biosensors: Towards Point-Of-Care Cancer Diagnostics.” Biosensors and Bioelectronics, 21 (10), 1887–1892 (2006). [8] K. Kivirand, M. Kaga, T. Rinken, “Calibrating Biosensors In Flow-Through Set-Ups: Studies With Glucose Optrodes.” State of the Art in Biosensors - General Aspects, InTech, London, 331–352 (2013). [9] G. Zhang, “Nanotechnology-Based Biosensors In Drug Delivery.” Nanotechnology in Drug Discovery, Springer, New York, 163–192 (2009). [10] M. Curreli, R. Zhang, F.N. Ishikawa, H.-K. Chang, R.J. Cote, C. Zhou, M.E. Thompson, “Real-Time, Label-Free Detection Of Biological Entities Using Nanowire-Based FETs.” IEEE Transactions on Nanotechnology, 7 (6), 651–667 (2008). [11] Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams, “Sequence-Specific Label-Free DNA Sensors Based On Silicon Nanowires.” Nano Letters, 4 (2), 245–247 (2004). [12] J.-H. Ahn, M. Im, T.J. Park, S.Y. Lee, Y. Choi, “Label-Free And Real-Time Detection Of Avian Influenza Using Nanowire Field Effect Transistors.” Journal of Biomedical Nanotechnology, 9 (3), 3–6 (2013). [13] D.A. Raorane, M.D. Lim, F.F. Chen, C.S. Craik, A. Majumdar, “Quantitative And Label-Free Technique For Measuring Protease Activity And Inhibition Using A Microfluidic Cantilever Array.” Nano Letters, 8 (9), 2968–2974 (2008). [14] H.K. Hunt, A.M. Armani, “Label-Free Biological And Chemical Sensors.” Nanoscale, 2 (9), 1544–1559 (2010). [15] E.T. Carlen, A. van den Berg, “Nanowire Electrochemical Sensors: Can We Live Without Labels?” Lab on a Chip, 7 (1), 19–23 (2007). [16] J. Fritz, E.B. Cooper, S. Gaudet, P.K. Sorger, S.R. Manalis, “Electronic Detection Of DNA By Its Intrinsic Molecular Charge.” Proceedings of the National Academy of Sciences, 99 (22), 14142–14146 (2002). [17] F. Uslu, S. Ingebrandt, D. Mayer, S. Böcker-Meffert, M. Odenthal, A. Offenhäusser, “Labelfree Fully Electronic Nucleic Acid Detection System Based On A Field-Effect Transistor Device.” Biosensors and Bioelectronics, 19 (12), 1723–1731 (2004). [18] P. Bergveld, “Development Of An Ion-Sensitive Solid-State Device For Neurophysiological Measurements.” IEEE Transactions on Biomedical Engineering, 17 (1), 70–71 (1970). [19] P. Bergveld, “Development, Operation, And Application Of The Tool For Electrophysiology.” IEEE Transactions on Biomedical Engineering, 19 (5), 342–351 (1972). [20] P. Bergveld, “The Development And Application Of FET-Based Biosensors.” Biosensors, 2 (1), 15–33 (1986). [21] A. van den Berg, P. Bergveld, D.N. Reinhoudt, E.J. Sudhölter, “Sensitivity Control Of ISFETs By Chemical Surface Modification.” Sensors and Actuators B: Chemical, 8 (2), 129–148 (1985). [22] U. Bockelmann, “Detecting DNA By Field Effect Transistor Arrays.” 2006 IFIP International Conference on Very Large Scale Integration, IEEE, 164–168 (2006). [23] Y. Han, D. Mayer, A. Offenhäusser, S. Ingebrandt, “Surface Activation Of Thin Silicon Oxides By Wet Cleaning And Silanization.” Thin Solid Films, 510 (1–2), 175–180 (2006). [24] S. Ingebrandt, A. Offenhäusser, “Label-Free Detection Of DNA Using Field-Effect Transistors.” Physica Status Solidi (A): Applications and Materials Science, 203 (14), 3399–3411 (2006). [25] E. Souteyrand, J.P. Cloarec, J.R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, M.F. Lawrence, “Direct Detection Of The Hybridization Of Synthetic Homo-Oligomer DNA Sequences By Field Effect.” Journal of Physical Chemistry B, 101 (15), 2980–2985 (1997). [26] W.H. Baumann, M. Lehmann, A. Schwinde, R. Ehret, M. Brischwein, B. Wolf, “Microelectronic Sensor System For Microphysiological Application On Living Cells.” Sensors and Actuators B: Chemical, 55 (1), 77–89 (1999). [27] S. Martinoia, N. Rosso, M. Grattarola, L. Lorenzelli, B. Margesin, M. Zen, “Development Of ISFET Array-Based Microsystems For Bioelectrochemical Measurements Of Cell Populations.” Biosensors and Bioelectronics, 16 (9–12), 1043–1050 (2001). [28] A. Offenhäusser, C. Sprössler, M. Matsuzawa, W. Knoll, “Field-Effect Transistor Array For Monitoring Electrical Activity From Mammalian Neurons In Culture.” Biosensors and Bioelectronics, 12 (8), 819–826 (1997). [29] S. Caras, J. Janata, “Field Effect Transistor Sensitive To Penicillin.” Analytical Chemistry, 52 (8), 1935–1937 (1980). [30] X.-L. Luo, J.-J. Xu, W. Zhao, H.-Y. Chen, “Glucose Biosensor Based On ENFET Doped With SiO2 Nanoparticles.” Sensors and Actuators B: Chemical, 97 (2–3), 249–255 (2004). [31] M. Zayats, A.B. Kharitonov, E. Katz, A.F. Bückmann, I. Willner, “An Integrated NAD+-Dependent Enzyme-Functionalized Field-Effect Transistor (ENFET) System: Development Of A Lactate Biosensor.” Biosensors and Bioelectronics, 15 (11–12), 671–680 (2000). [32] A.B. Kharitonov, J. Wasserman, E. Katz, I. Willner, “The Use Of Impedance Spectroscopy For The Characterization Of Protein-Modified ISFET Devices: Application Of The Method For The Analysis Of Biorecognition Processes.” Journal of Physical Chemistry B, 105 (19), 4205–4213 (2001). [33] J. Kruise, J.G. Rispens, P. Bergveld, F.J.B. Kremer, D. Starmans, J.R. Haak, J. Feijen, D.N. Reinhoudt, “Detection Of Charged Proteins By Means Of Impedance Measurements.” Sensors and Actuators B: Chemical, 6 (1–3), 101–105 (1992). [34] N.F. Starodub, B.B. Dzantiev, V.M. Starodub, A.V. Zherdev, “Immunosensor For The Determination Of The Herbicide Simazine Based On An Ion-Selective Field-Effect Transistor.” Analytica Chimica Acta, 424 (1), 37–43 (2000). [35] N. Elfström, R. Juhasz, I. Sychugov, T. Engfeldt, A. Eriksson Karlström, J. Linnros, “Surface Charge Sensitivity Of Silicon Nanowires: Size Dependence.” Nano Letters, 7 (9), 2608–2612 (2007). [36] G.-J. Zhang, G. Zhang, J.H. Chua, R.-E. Chee, E.H. Wong, A. Agarwal, K.D. Buddharaju, N. Singh, Z. Gao, N. Balasubramanian, “DNA Sensing By Silicon Nanowire: Charge Layer Distance Dependence.” Nano Letters, 8 (4), 1066–1070 (2008). [37] Z. Gao, A. Agarwal, A.D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K.D. Buddharaju, J. Kong, “Silicon Nanowire Arrays For Label-Free Detection Of DNA.” Analytical Chemistry, 79 (9), 3291–3297 (2007). [38] J. Hahm, C.M. Lieber, “Direct Ultrasensitive Electrical Detection Of DNA And DNA Sequence Variations Using Nanowire Nanosensors.” Nano Letters, 4 (1), 51–54 (2004). [39] X.T. Vu, R. Stockmann, B. Wolfrum, A. Offenhäusser, S. Ingebrandt, “Fabrication And Application Of A Microfluidic-Embedded Silicon Nanowire Biosensor Chip.” Physica Status Solidi (A): Applications and Materials Science, 207 (4), 850–857 (2010). [40] C.-C. Wu, F.-H. Ko, Y.-S. Yang, D.-L. Hsia, B.-S. Lee, T.-S. Su, “Label-Free Biosensing Of A Gene Mutation Using A Silicon Nanowire Field-Effect Transistor.” Biosensors and Bioelectronics, 25 (4), 820–825 (2009). [41] E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, “Label-Free Immunodetection With CMOS-Compatible Semiconducting Nanowires.” Nature, 445 (7127), 519–522 (2007). [42] J.F. Eschermann, R. Stockmann, M. Hueske, X.T. Vu, S. Ingebrandt, A. Offenhäusser, “Action Potentials Of HL-1 Cells Recorded With Silicon Nanowire Transistors.” Applied Physics Letters, 95 (8), 83703-1-83703–3 (2009). [43] C.M. Lieber, “Semiconductor Nanowires: A Platform For Nanoscience And Nanotechnology.” MRS Bulletin, 36 (12), 1052–1063 (2011). [44] T.-S. Pui, A. Agarwal, F. Ye, N. Balasubramanian, P. Chen, “CMOS-Compatible Nanowire Sensor Arrays For Detection Of Cellular Bioelectricity.” Small, 5 (2), 208–212 (2009). [45] A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced Sensing Of Nucleic Acids With Silicon Nanowire Field Effect Transistor Biosensors.” Nano Letters, 12 (10), 5262–5268 (2012). [46] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, “Electrical Detection Of Single Viruses.” Proceedings of the National Academy of Sciences, 101 (39), 14017–14022 (2004). [47] F. Patolsky, G. Zheng, C.M. Lieber, “Nanowire-Based Biosensors.” Analytical Chemistry, 78 (13), 4260–4269 (2006). [48] F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, “Detection, Stimulation, And Inhibition Of Neuronal Signals With High-Density Nanowire Transistor Arrays.” Science, 313 (5790), 1100–1104 (2006). [49] S. Baumgartner, M. Vasicek, A. Bulyha, C. Heitzinger, “Optimization Of Nanowire DNA Sensor Sensitivity Using Self-Consistent Simulation.” Nanotechnology, 22 (42), 425503 (2011). [50] Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors.” Nano Letters, 3 (2), 149–152 (2003). [51] Y. Paska, T. Stelzner, O. Assad, U. Tisch, S. Christiansen, H. Haick, “Molecular Gating Of Silicon Nanowire Field-Effect Transistors With Nonpolar Analytes.” ACS Nano, 6 (1), 335–345 (2012). [52] C.-C. Tsai, P.-L. Chiang, C.-J. Sun, T.-W. Lin, M.-H. Tsai, Y.-C. Chang, Y.-T. Chen, “Surface Potential Variations On A Silicon Nanowire Transistor In Biomolecular Modification And Detection.” Nanotechnology, 22 (13), 135503 (2011). [53] X.T. Vu, J.F. Eschermann, R. Stockmann, R. GhoshMoulick, A. Offenhäusser, S. Ingebrandt, “Top-Down Processed Silicon Nanowire Transistor Arrays For Biosensing.” Physica Status Solidi (A): Applications and Materials Science, 206 (3), 426–434 (2009). [54] X.T. Vu, “Silicon Nanowire Transistor Arrays For Biomolecular Detection.,” PhD Thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen (2011). [55] C. O’Connor, J.U. Adams, “Essentials Of Cell Biology,” NPG Education, Cambridge, Massachusetts (2010). [56] G. Walsh, “Proteins: Biochemistry And Biotechnology,” John Wiley & Sons Ltd., New Jersey (2002). [57] F. Horn, “Biochemie Des Menschen: Das Lehrbuch Für Das Medizinstudium,” Georg Thieme Verlag, Stuttgart (2012). [58] J.M. Berg, J.L. Tymoczko, L. Stryer, “Biochemie,” Spektrum Akademischer Verlag, Heidelberg (2007). [59] H. Will, “Molekularbiologie Kurz Und Bündig,” Springer-Verlag, Berlin (2014). [60] A. McLennan, A. Bates, P. Turner, M. White, “Molekularbiologie Für Biologen, Biochemiker, Pharmazeuten Und Mediziner,” Wiley VCH Verlag GmbH & Co. KGaA, Weinheim (2013). [61] S. Silbernagel, F. Lang, “Taschenatlas Pathophysiologie,” Georg Thieme Verlag KG, Stuttgart (2012). [62] E.L. Logigian, R.F. Kaplan, A.C. Steere, “Chronic Neurologic Manifestations Of Lyme Disease.” The New England Journal of Medicine, 323 (21), 1438–1444 (1990). [63] R.B. Nadelman, G.P. Wormser, “Lyme Borreliosis.” Lancet, 352 (9127), 557–565 (1998). [64] M.E. Aguero-Rosenfeld, G. Wang, I. Schwartz, G.P. Wormser, “Diagnosis Of Lyme Borreliosis.” Clinical Microbiology Reviews, 18 (3), 484–509 (2005). [65] J. Henry M. Feder, B.J.B. Johnson, S. O’Connell, E.D. Shapiro, A.C. Steere, G.P. Wormser, “A Critical Appraisal Of Chronic Lyme Disease.” The New England Journal of Medicine, 357 (14), 1422–1430 (2007). [66] J.J. Nocton, F. Dressler, B.J. Rutledge, P.N. Rys, D.H. Persing, A.C. Steere, “Detection Of Borrelia Burgdoferi DNA By Polymerase Chain Reaction In Synovial Fluid From Patients With Lyme Arthritis.” The New England Journal of Medicine, 330 (4), 229–234 (1994). [67] C. Laske, E. Stransky, T. Leyhe, G.W. Eschweiler, A. Wittorf, E. Richartz, M. Bartels, G. Buchkremer, K. Schott, “Stage-Dependent BDNF Serum Concentrations In Alzheimer’s Disease.” Journal of Neural Transmission, 113 (9), 1217–1224 (2006). [68] C. Hyman, M. Hofer, Y.-A. Barde, M. Juhasz, G.D. Yancopoulos, S.P. Squinto, R.M. Lindsay, “BDNF Is A Neurotrophic Factor Of Dopaminergic Neurons Of The Substantia Nigra.” Nature, 350 (6315), 230–232 (1991). [69] A. Nowak, J.P. Szaflik, M. Gacek, K. Przybylowska-Sygut, A. Kamińska, J. Szaflik, I. Majsterek, “BDNF And HSP Gene Polymorphisms And Their Influence On The Progression Of Primary Open-Angle Glaucoma In A Polish Population.” Archives of Medical Science, 10 (6), 1206–1213 (2014). [70] C. Alzheimer, “Molecular And Cellular Biology Of Neuroprotection In The CNS,” Kluwer Academic/Plenum Publisher and Landes Bioscience, New York (2002). [71] A.L. Mandel, H. Ozdener, V. Utermohlen, “Brain-Derived Neurotrophic Factor In Human Saliva: ELISA Optimization And Biological Correlates.” Journal of Immunoassay and Immunochemistry, 32 (1), 18–30 (2011). [72] C. Vrijen, H.M. Schenk, C.A. Hartman, A.J. Oldehinkel, “Measuring BDNF In Saliva Using Commercial ELISA: Results From A Small Pilot Study.” Psychiatry Research, 254, 340–346 (2017). [73] A. Mohammad, V.G. Amooeian, E. Rashidi, “Dysfunction In Brain-Derived Neurotrophic Factor Signaling Pathway And Susceptibility To Schizophrenia, Parkinson’s And Alzheimer’s Diseases.” Current Gene Therapy, availabe online (2018). [74] L. Minichiello, “TrkB Signalling Pathways In LTP And Learning.” Nature Reviews Neuroscience, 10 (12), 850–860 (2009). [75] J.B. Takahashi, M. Hoshimarub, H. Kikuchib, M. Hatanaka, “Developmental Expression Of TrkB And Low-Affinity NGF Receptor In The Rat Retina.” Neuroscience Letters, 151 (2), 174–177 (1993). [76] J. Jankovic, Eduardo Tolosa, “Parkinson’s Disease And Movement Disorders,” Lippincott Williams & Wilkins, Philadelphia (2007). [77] R.F. Pfeiffer, Z.K. Wszolek, M. Ebadi, “Parkinson’s Disease,” Taylor & Francis Group, London (2012). [78] B.K. Pedersen, M. Pedersen, K.S. Krabbe, H. Bruunsgaard, V.B. Matthews, M. a Febbraio, “Role Of Exercise-Induced Brain-Derived Neurotrophic Factor Production In The Regulation Of Energy Homeostasis In Mammals.” Experimental Physiology, 94 (12), 1153–1160 (2009). [79] C. Zuccato, A. Ciammola, D. Rigamonti, B.R. Leavitt, D. Goffredo, L. Conti, M.E. MacDonald, R.M. Friedlander, V. Silani, M.R. Hayden, T. Timmusk, S. Sipione, E. Cattaneo, “Loss Of Huntingtin-Mediated BDNF Gene Transcription In Huntington’s Disease.” Science, 293 (5529), 493–498 (2001). [80] C. Zuccato, D. Liber, C. Ramos, A. Tarditi, D. Rigamonti, M. Tartari, M. Valenza, E. Cattaneo, “Progressive Loss Of BDNF In A Mouse Model Of Huntington’s Disease And Rescue By BDNF Delivery.” Pharmacological Research, 52 (2), 133–139 (2005). [81] “Http://www.huntington-hilfe.de.” Deutsche Huntington-Hilfe e.V. (2016). [82] “Http://www.mayoclinic.org.” Mayo Clinic (2017). [83] H.S. Phillips, J.M. Hains, M. Armanini, G.R. Laramee, S.A. Johnson, J.W. Winslow, P.A. Gerontology, “BDNF MRNA Is Decreased In The Hippocampus Of Individuals With Alzheimer’s Disease.” Neuron, 7 (5), 695–702 (1991). [84] X.-Y. Qi, C. Cao, N.X. Cawley, T.-T. Liu, J. Yuan, Y.P. Loh, Y. Cheng, “Decreased Peripheral Brain-Derived Neurotrophic Factor Levels In Alzheimer’s Disease: A Meta-Analysis Study (N=7277).” Molecular Psychiatry, 22, 312–320 (2017). [85] L. Tapia-Arancibia, E. Aliaga, M. Silhol, S. Arancibia, “New Insights Into Brain BDNF Function In Normal Aging And Alzheimer Disease.” Brain Research Reviews, 59 (1), 201–220 (2008). [86] “Https://www.alzheimer-forschung.de.” Alzheimer-Forschung Initiative e.V. (2017). [87] G. Richter, “Praktische Biochemie: Grundlagen Und Techniken,” Georg Thieme Verlag, Stuttgart (2003). [88] C. Hamers-Casterman, T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers, E. Songa, N. Bendahman, R. Hamers, “Naturally Occurring Antibodies Devoid Of Light Chains.” Nature, 363 (6428), 446–448 (1993). [89] M.F. Flajnik, N. Deschacht, S. Muyldermans, “A Case Of Convergence: Why Did A Simple Alternative To Canonical Antibodies Arise In Sharks And Camels?” PLOS Biology, 9 (8), 1–5 (2011). [90] J. Wesolowski, V. Alzogaray, J. Reyelt, M. Unger, K. Juarez, M. Urrutia, A. Cauerhff, W. Danquah, B. Rissiek, F. Scheuplein, N. Schwarz, S. Adriouch, O. Boyer, M. Seman, A. Licea, D.V. Serreze, F.A. Goldbaum, F. Haag, F. Koch-Nolte, “Single Domain Antibodies: Promising Experimental And Therapeutic Tools In Infection And Immunity.” Medical Microbiology and Immunology, 198 (3), 157–174 (2009). [91] K.K. Jain, “The Handbook Of Nanomedicine,” Springer Nature, New York (2017). [92] M.M. Harmsen, H.J. De Haard, “Properties, Production, And Applications Of Camelid Single-Domain Antibody Fragments.” Applied Microbiology and Biotechnology, 77 (1), 13–22 (2007). [93] A. Liesz, C. Kleinschnitz, “Mechanisms Of Neuroinflammation And Inflammatory Neurodegeneration In Acute Brain Injury,” Frontiers Media SA, Lausanne (2015). [94] L. Rink, A. Kruse, H. Haase, “Immunologie Für Einsteiger,” Spektrum Akademischer Verlag, Heidelberg (2012). [95] H.R. Horton, L.A. Moran, K.G. Scrimgeour, M.D. Perry, J.D. Rawn, “Biochemie,” Pearson Education Inc., London (2008). [96] T.A. Brown, “Genome Und Gene: Lehrbuch Der Molekularen Genetik,” Spektrum Akademischer Verlag, Heidelberg (2007). [97] D.P. Clark, N.J. Pazdernik, “Molecular Biology: Understanding The Genetic Revolution,” Academic Press Inc., Oxford (2012). [98] R.R. Sinden, “DNA Structure And Function,” Academic Press Inc., Oxford (1994). [99] J.U. Adams, “DNA Sequencing Technologies.” Nature Education, 1 (1), (2008). [100] E.C. Friedberg, G.C. Walker, W. Siede, “DNA Repair And Mutagenesis,” American Society for Microbiology, Washington (1995). [101] T.H. McConnell, “The Nature Of Disease: Pathology For The Health Professions,” Lippincott Williams & Wilkins, Philadelphia (2007). [102] P.S. Frenette, G.F. Atweh, “Science In Medicine Sickle Cell Disease: Old Discoveries, New Concepts, And Future Promise.” The Journal of Clinical Investigation, 117 (4), 850–858 (2007). [103] D.C. Rees, T.N. Williams, M.T. Gladwin, “Sickle-Cell Disease.” Lancet, 376 (9757), 2018–2031 (2010). [104] “Sickle-Cell Anaemia,” World Health Organization (2005). [105] “Http://www.uniklinik-ulm.de/struktur/institute/klinische-chemie/home/praeanalytik/untersuchungen-leistungsverzeichnis/hij/hla-b27-mutation.” Universitätsklinikum Ulm (2017). [106] M.P. Martin, X. Gao, J.-H. Lee, G.W. Nelson, R. Detels, J.J. Goedert, S. Buchbinder, K. Hoots, D. Vlahov, J. Trowsdale, M. Wilson, S.J. O’Brien, M. Carrington, “Epistatic Interaction Between KIR3DS1 And HLA-B Delays The Progression To AIDS.” Nature Genetics, 31 (4), 429–434 (2002). [107] S.J. O’Brien, X. Gao, M. Carrington, “HLA And AIDS: A Cautionary Tale.” Trends in Molecular Medicine, 7 (9), 379–381 (2001). [108] “Http://www.bechterew.de.” Deutsche Vereinigung Morbus Bechterew e.V. (2017). [109] “Http://www.medizin.uni-halle.de.” Universitätsklinikum Halle (Saale) (2017). [110] R. Bartl, C. Bartl, “Bone Disorders,” Springer, Switzerland (2017). [111] E.-R. von Leitner, V. Kötter, R. Schröder, “Kardiale Spätmanifestationen Des Morbus Reiter.” Deutsche Medizinische Wochenschrift, 106 (29–30), 939–941 (1981). [112] J.M.H. Moll, V. Wright, “Psoriatic Arthritis.” Seminars in Arthritis and Rheumatism, 3 (1), 55–78 (1973). [113] L.J. McCann, L.R. Wedderburn, N. Hasson, “Juvenile Idiopathic Arthritis.” Archives of Disease in Childhood - Education and Practice, 91 (2), 29–36 (2006). [114] M. Di Paola, D. Cavalieri, D. Albanese, M. Sordo, M. Pindo, C. Donati, I. Pagnini, T. Giani, G. Simonini, A. Paladini, P. Lionetti, C. De Filippo, R. Cimaz, “Alteration Of Fecal Microbiota Profiles In Juvenile Idiopathic Arthritis. Associations With Hla-B27 Allele And Disease Status.” Frontiers in Microbiology, 7, 1–13 (2016). [115] H. Li, Q. Li, C. Ji, J. Gu, “Ankylosing Spondylitis Patients With HLA-B*2704 Have More Uveitis Than Patients With HLA-B*2705 In A North Chinese Population.” Ocular Immunology and Inflammation, 26 (1), 65–69 (2018). [116] E.M. D’Ambrosio, M. La Cava, P. Tortorella, M. Gharbiya, M. Campanella, L. Iannetti, “Clinical Features And Complications Of The HLA-B27-associated Acute Anterior Uveitis: A Metanalysis.” Seminars in Ophthalmology, 32 (6), 689-701 (2017). [117] W.F. Gattaz, S.K. Kasper, R. Ewald, H.B. Beckmann, “HLA, Schizophrenien Und Arthropathien.” Psychatria Clinica, 14 (1), 49–55 (1971). [118] C. Anasetti, D. Amos, P.G. Beatty, F.R. Appelbaum, W. Bensinger, C.D. Buckner, R. Clift, K. Doney, P.J. Martin, E. Mickelson, B. Nisperos, J. O’Quigley, R. Ramberg, J.E. Sanders, P. Stewart, R. Storb, K.M. Sullivan, R.P. Witherspoon, E.D. Thomas, J.A. Hansen, “Effect Of HLA Compatibility On Engraftment Of Bone Marrow Transplants In Patients With Leukemia Or Lymphoma.” The New England Journal of Medicine, 320 (4), 197–204 (1989). [119] S. Takemoto, F.K. Port, F.H.J. Claas, R.J. Duquesnoy, “HLA Matching For Kidney Transplantation.” Human Immunology, 65 (12), 1489–1505 (2004). [120] G. Opelz, T. Wujciak, B. Döhler, S. Scherer, J. Mytilineos, “HLA Compatibility And Organ Transplant Survival. Collaborative Transplant Study.” Reviews in Immunogenetics, 1 (3), 334–342 (1999). [121] Y. Morishima, T. Sasazuki, H. Inoko, T. Juji, T. Akaza, K. Yamamoto, Y. Ishikawa, S. Kato, H. Sao, H. Sakamaki, K. Kawa, N. Hamajima, S. Asano, Y. Kodera, “The Clinical Significance Of Human Leukocyte Antigen (HLA) Allele Compatibility In Patients Receiving A Marrow Transplant From Serologically HLA-A, HLA-B, And HLA-DR Matched Unrelated Donors.” Blood, 99 (11), 4200–4206 (2002). [122] G.U. Urban, “Micro- And Nanobiosensors: State Of The Art And Trends.” Measurement Science and Technology, 20 (1–18), 12001 (2009). [123] B. Lu, M.R. Smyth, R.O. Kennedy, “Oriented Immobilization Of Antibodies And Its Applications In Lmmunoassays And Immunosensors.” Analyst, 121 (3), 29R–32R (1996). [124] D. Wild, “The Immunoassay Handbook: Theory And Applications Of Ligand Binding, ELISA And Related Techniques,” Elsevier Ltd., Oxford (2005). [125] A. Voller, D.E. Bidwell, A. Bartlett, “Enzyme Immunoassays In Diagnostic Medicine.” Bulletin of the World Health Organization, 53 (1), 55–65 (1976). [126] M.H. Gey, “Instrumentelle Analytik Und Bioanalytik: Biosubstanzen, Trennmethoden Strukturanalytik, Applikationen,” Springer Verlag, Heidelberg (2008). [127] J.R. Crowther, “ELISA: Theory And Practice,” Humana Press, Totowa, New Jersey (1995). [128] “Http://www.elisa-antibody.com.” Sino Biological Inc. (2017). [129] K.D. McClatchey, “Clinical Laboratory Medicine,” Lippincott Williams & Wilkins, Philadelphia (2002). [130] R.M. Sutherland, C. Dähne, J.F. Place, A.R. Ringrose, “Immunoassays At A Quartz-Liquid Interface: Theory, Instrumentation And Preliminary Application To The Fluorescent Immunoassay Of Human Immunoglobulin G.” Journal of Immunological Methods, 74 (2), 253–265 (1984). [131] X.-D. Yang, Y. Ci, W. Chang, “Time-Resolved Fluorescence Immunoassay With Measurement Of A Europium Chelate In Solution: Dissociation Conditions And Applications For Determination Of Cortisol.” Analytical Chemistry, 66 (15), 2590–2594 (1994). [132] A. Kar, “Pharmaceutical Drug Analysis,” New Age International Limited, New Delhi (2005). [133] A.L. Ghindilis, P. Atanasov, M. Wilkins, E. Wilkins, “Immunosensors: Electrochemical Sensing And Other Engineering Approaches.” Biosensors and Bioelectronics, 13 (1), 113–131 (1998). [134] C.L. Morgan, D.J. Newman, C.P. Price, “Immunosensors: Technology And Opportunities In Laboratory Medicine.” Clinical Chemistry, 42 (2), 193–209 (1996). [135] B. Hock, “Antibodies For Immunosensors A Review.” Analytica Chimica Acta, 347 (1–2), 177–186 (1997). [136] R. Bumgarner, “DNA Microarrays: Types, Applications And Their Future.” Current Protocols in Molecular Biology, 6137 (206), 1–17 (2013). [137] D. Shalon, S.J. Smith, P.O. Brown, “A DNA Microarray System For Analyzing Complex DNA Samples Using Two-Color Fluorescent Probe Hybridization.” Genome Research, 6 (415), 639–645 (1996). [138] J.M. Heather, B. Chain, “The Sequence Of Sequencers: The History Of Sequencing DNA.” Genomics, 107 (1), 1–8 (2016). [139] “Http://www.laborpraxis.vogel.de/bioanalytik-pharmaanalytik/articles/139687/.” Fuxius, S.M., Lisdat, F. (2008). [140] E.P. Diamandis, “Sequencing With Microarray Technology—A Powerful New Tool For Molecular Diagnostics.” Clinical Chemistry, 46 (10), 1523–1525 (2000). [141] “Http://en.wikipedia.org/wiki/DNA_microarray.” Wikimedia Foundation Inc. (2017). [142] A. Sassolas, B.D. Leca-Bouvier, L.J. Blum, “DNA Biosensors And Microarrays.” Chemical Reviews, 108 (1), 109–139 (2008). [143] H. Ju, H. Zhao, “Electrochemical Biosensors For DNA Analysis.” Frontiers in Bioscience, 10, 37–46 (2005). [144] T.G. Drummond, M.G. Hill, J.K. Barton, “Electrochemical DNA Sensors.” Nature Biotechnology, 21 (10), 1192–1199 (2003). [145] B. van Grinsven, N. Vanden Bon, L. Grieten, M. Murib, S.D. Janssens, K. Haenen, E. Schneider, S. Ingebrandt, M.J. Schöning, V. Vermeeren, M. Ameloot, L. Michiels, R. Thoelen, W. De Ceuninck, P. Wagner, “Rapid Assessment Of The Stability Of DNA Duplexes By Impedimetric Real-Time Monitoring Of Chemically Induced Denaturation.” Lab on a Chip, 11 (9), 1656–1663 (2011). [146] B. van Grinsven, N. Vanden Bon, H. Strauven, L. Grieten, M. Murib, S.D. Janssens, K. Haenen, M.J. Scho, K.L. Jime, V. Vermeeren, M. Ameloot, L. Michiels, R. Thoelen, W. De Ceuninck, P. Wagner, “Heat-Transfer Resistance At Solid-Liquid Interfaces: A Tool For The Detection Of Single-Nucleotide Polymorphisms In DNA.” ACS Nano, 6 (3), 2712–2721 (2012).[147] N. Vanden Bon, B. van Grinsven, M.S. Murib, W.S. Yeap, K. Haenen, W. De Ceuninck, P. Wagner, M. Ameloot, V. Vermeeren, L. Michiels, “Heat-Transfer-Based Detection Of SNPs In The PAH Gene Of PKU Patients.” International Journal of Nanomedicine, 9 (1), 1629–1640 (2014). [148] M.S. Murib, W.S. Yeap, Y. Eurlings, B. van Grinsven, H.G. Boyen, B. Conings, L. Michiels, M. Ameloot, R. Carleer, J. Warmer, P. Kaul, K. Haenen, M.J. Schöning, W. De Ceuninck, P. Wagner, “Heat-Transfer Based Characterization Of DNA On Synthetic Sapphire Chips.” Sensors and Actuators B: Chemical, 230, 260–271 (2016). [149] C. Kataoka-Hamai, Y. Miyahara, “Label-Free Detection Of DNA By Field-Effect Devices.” IEEE Sensors Journal, 11 (12), 3153–3160 (2011). [150] M.W. Shinwari, M.J. Deen, D. Landheer, “Study Of The Electrolyte-Insulator-Semiconductor Field-Effect Transistor (EISFET) With Applications In Biosensor Design.” Microelectronics Reliability, 47 (12), 2025–2057 (2007). [151] T. Kuriyama, J. Kimura, “Biosensor Principles And Applications,” Marcel Dekker Inc., New York (1991). [152] C.-S. Lee, S.K. Kim, M. Kim, “Ion-Sensitive Field-Effect Transistor For Biological Sensing.” Sensors, 9 (9), 7111–7131 (2009). [153] M. Jansen, “Silizium Nanoribbon Feld-Effekt Transistoren Zur Kopplung An Elektroaktive Zellen,” PhD Thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University (2013). [154] P. Bergveld, “Thirty Years Of ISFETOLOGY What Happened In The Past 30 Years And What May Happen In The Next 30 Years.” Sensors and Actuators B: Chemical, 88 (1), 1–20 (2003). [155] P. Bergveld, “ISFET, Theory And Practice.” IEEE Sensor Conference Toronto, 1–26 (2003). [156] S. Ingebrandt, Y. Han, F. Nakamura, A. Poghossian, M.J. Schöning, A. Offenhäusser, “Label-Free Detection Of Single Nucleotide Polymorphisms Utilizing The Differential Transfer Function Of Field-Effect Transistors.” Biosensors and Bioelectronics, 22 (12), 2834–2840 (2007). [157] X.T. Vu, R. GhoshMoulick, J.F. Eschermann, R. Stockmann, A. Offenhäusser, S. Ingebrandt, “Fabrication And Application Of Silicon Nanowire Transistor Arrays For Biomolecular Detection.” Sensors and Actuators B: Chemical, 144 (2), 354–360 (2010). [158] J.-Y. Kim, J.-H. Ahn, D.-I. Moon, S. Kim, T.J. Park, S.Y. Lee, Y.-K. Choi, “A Dual-Gate Field-Effect Transistor For Label-Free Electrical Detection Of Avian Influenza.” BioNanoScience, 2 (1), 35–41 (2012). [159] K.-I. Chen, B.-R. Li, Y.-T. Chen, “Silicon Nanowire Field-Effect Transistor-Based Biosensors For Biomedical Diagnosis And Cellular Recording Investigation.” Nano Today, 6 (2), 131–154 (2011). [160] Y. Cui, C.M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks.” Science, 291 (5505), 851–853 (2001). [161] O.H. Elibol, B. Reddy, R. Bashir, “Nanoscale Thickness Double-Gated Field Effect Silicon Sensors For Sensitive PH Detection In Fluid.” Applied Physics Letters, 92 (19), 193904-1-193904–3 (2008). [162] F. Patolsky, G. Zheng, C.M. Lieber, “Fabrication Of Silicon Nanowire Devices For Ultrasensitive, Label-Free, Real-Time Detection Of Biological And Chemical Species.” Nature Protocols, 1 (4), 1711–1724 (2006). [163] E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, M.A. Reed, “Importance Of The Debye Screening Length On Nanowire Field Effect Transistor Sensors.” Nano Letters, 7 (11), 3405–3409 (2007). [164] Y.L. Bunimovich, Y.S. Shin, W.-S. Yeo, M. Amori, G. Kwong, J.R. Heath, “Quantitative Real-Time Measurements Of DNA Hybridization With Alkylated Nonoxidized Silicon Nanowires In Electrolyte Solution.” Journal of the American Chemical Society, 128 (50), 16323–16331 (2006). [165] S. Ingebrandt, X.T. Vu, J.F. Eschermann, R. Stockmann, A. Offenhäusser, “Top-Down Processed SOI Nanowire Devices For Biomedical Applications.” ECS Transactions, 35 (7), 3–15 (2011). [166] R.E.G. van Hal, J.C.T. Eijkel, P. Bergveld, “A General Model To Describe The Electrostatic Potential At Electrolyte Oxide Interfaces.” Advances in Colloid and Interface Science, 69 (1–3), 31–62 (1996). [167] D.E. Yates, S. Levine, T.W. Healy, “Site-Binding Model Of The Electrical Double Layer At The Oxide/Water Interface.” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70 (0), 1807–1818 (1974). [168] T. Hiemstra, J. De Wit, W. Van Riemsdijk, “Multisite Proton Adsorption Modeling At The Solid/solution Interface Of (Hydr)oxides: A New Approach.” Journal of Colloid and Interface Science, 133 (1), 91–104 (1989). [169] D.C. Grahame, “The Electrical Double Layer And The Theory Of Electrocapillarity.” Chemical Reviews, 41 (3), 441–501 (1947). [170] G. Quincke, “Über Die Fortführung Materieller Theilchen Durch Strömende Elektricität.” Annalen der Physik und Chemie, 189 (8), 513–598 (1861). [171] H.J. Butt, K. Graf, M. Kappl, “Physics And Chemistry Of Interfaces,” Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003). [172] P.W. Atkins, J. de Paula, “Physikalische Chemie,” Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2006). [173] M. Gouy, “Sur La Constitution De La Charge Électrique À La Surface D’Un Électrolyte.” Journal des Physique Théorique et Appliquée, 9 (1), 457–468 (1910). [174] D.L. Chapman, “A Contribution To The Theory Of Electrocapillarity.” Philosophical Magazine, 25 (148), 475–481 (1913). [175] O. Stern, “Zur Theorie Der Elektrolytischen Doppelschicht.” Zeitschrift für Elektrochemie, 30 (21–22), 508–516 (1924). [176] L. Zhang, X. Zao, “Carbon-based Materials As Supercapacitor Electrodes.” Chemical Society Reviews, 38 (9), 2520–2531 (2009). [177] M. Reth, “Matching Cellular Dimensions With Molecular Sizes.” Nature Immunology, 14 (8), 765–767 (2013). [178] M. Krause, “Untersuchungen Zur Zell-Transistor Kopplung Mittels Der Voltage-Clamp Technik,” PhD Thesis, Fachbereich Chemie und Pharmazie der Johannes Gutenberg-Universität Mainz (2000). [179] Y. Han, “Label-Free Detection Of Biomolecules By A Field-Effect Transistor Microarray Biosensor With Bio-Functionalized Gate Surfaces,” PhD Thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen (2005). [180] L. Bousse, N.F. de Rooij, P. Bergveld, “Operation Of Chemically Sensitive Field-Effect Sensors As A Function Of The Insulator-Electrolyte Interface.” IEEE Transactions on Electron Devices, 30 (10), 1263–1270 (1983). [181] A.V. Dobrynin, M. Rubinstein, “Theory Of Polyelectrolytes In Solutions And At Surfaces.” Progress in Polymer Science, 30 (11), 1049–1118 (2005). [182] S. Lankalapalli, V.R.M. Kolapalli, “Polyelectrolyte Complexes: A Review Of Their Applicability In Drug Delivery Technology.” Indian Journal of Pharmaceutical Sciences, 71 (5), 481–487 (2009). [183] A. Poghossian, M. Weil, A.G. Cherstvy, M.J. Schöning, “Electrical Monitoring Of Polyelectrolyte Multilayer Formation By Means Of Capacitive Field-Effect Devices.” Analytical and Bioanalytical Chemistry, 405 (20), 6425–6436 (2013). [184] M.H. Abouzar, “Detection Of Molecular Interactions Using Field-Effect-Based Capacitive Devices,” PhD Thesis, Mathematisch-Naturwissenschaftlichen Fakultät I, Humboldt-Universität zu Berlin (2011). [185] R. GhoshMoulick, X.T. Vu, S. Gilles, D. Mayer, A. Offenhäusser, S. Ingebrandt, “Impedimetric Detection Of Covalently Attached Biomolecules On Field-Effect Transistors.” Physica Status Solidi (A): Applications and Materials Science, 206 (3), 417–425 (2009). [186] DataPhysics Instruments GmbH, “Operating Manual OCA 15 Plus,” DataPhysics Instruments GmbH, Filderstadt (2002). [187] D.C. Krüger, “Experimentelle Untersuchungen Zur Oberflächenveränderung Metallischer Implantatmaterialien Durch Plasmabehandlung,” PhD Thesis, Medizinische Fakultät der Ruhr-Universität Bochum (2009). [188] Y. Yuan, T.R. Lee, “Surface Science Techniques,” Springer-Verlag, Berlin, Heidelberg (2013). [189] S. Russell, “Contact Angle Measurement Technique For Rough Surfaces,” Master Thesis, Michigan Technological University (2009). [190] J. Sobek, C. Aquino, R. Schlapbach, “Analyzing Properties Of Fluorescent Dyes Used For Labeling DNA In Microarray Experiments.” BioFiles, 2 (5), 5–8 (2007). [191] “Http://www.genelink.com.” Gene Link (2017). [192] N. Panchuk-Voloshina, R.P. Haugland, J. Bishop-Stewart, M.K. Bhalgat, P.J. Millard, F. Mao, W.-Y. Leung, “Alexa Dyes, A Series Of New Fluorescent Dyes That Yield Exceptionally Bright, Photostable Conjugates.” Journal of Histochemistry and Cytochemistry, 47 (9), 1179–1188 (1999). [193] S. Schäfer, S. Eick, B. Hofmann, T. Dufaux, R. Stockmann, G. Wrobel, A. Offenhäusser, S. Ingebrandt, “Time-Dependent Observation Of Individual Cellular Binding Events To Field-Effect Transistors.” Biosensors and Bioelectronics, 24 (5), 1201–1208 (2009). [194] S. Ingebrandt, Y. Han, M.-R. Sakkari, R. Stockmann, O. Belinskyy, A. Offenhäusser, “Electronic Detection Of Nucleic Acid Molecules With A Field-Effect Transistor.” Semiconductor Materials For Sensing, 828, 307–312 (2005). [195] Y.-L. Chin, J.-C. Chou, T.-P. Sun, W.-Y. Chung, S.-K. Hsiung, “A Novel PH Sensitive ISFET With On Chip Temperature Sensing Using CMOS Standard Process.” Sensors and Actuators B: Chemical, 76 (1–3), 582–593 (2001). [196] A. Agarwal, K. Buddharaju, I.K. Lao, N. Singh, N. Balasubramanian, D.L. Kwong, “Silicon Nanowire Sensor Array Using Top-Down CMOS Technology.” Sensors and Actuators A: Physical, 145–146, 207–213 (2008). [197] Y. Cui, X. Duan, J. Hu, C.M. Lieber, “Doping And Electrical Transport In Silicon Nanowires.” Journal of Physical Chemistry B, 104 (22), 5213–5216 (2000). [198] H.H. Kampinga, “Thermotolerance In Mammalian Cells. Protein Denaturation And Aggregation, And Stress Proteins.” Journal of Cell Science, 104 (1), 11–17 (1993). [199] M. Peyrard, A.R. Bishop, “Statistical Mechanics Of A Nonlinear Model For DNA Denaturation.” Physical Review Letters, 62 (23), 2755–2758 (1989). [200] H.L. Casal, U. Köhler, H.H. Mantsch, “Structural And Conformational Changes Of Β-Lactoglobulin B: An Infrared Spectroscopic Study Of The Effect Of PH And Temperature.” Biochimica et Biophysica Acta, 957 (1), 11–20 (1988). [201] A. Caflisch, M. Karplus, “Molecular Dynamics Simulation Of Protein Denaturation: Solvation Of The Hydrophobic Cores And Secondary Structure Of Barnase.” Proceedings of the National Academy of Sciences, 91 (5), 1746–1750 (1994). [202] Malla Reddy Sakkari, “Exploration Of ISFET Transfer-Function For Biochemical Applications,” Master Thesis, Department of Applied Physics, Aachen University of Applied Sciences, Campus Jülich (2005). [203] D. Landheer, W.R. McKinnon, G. Aers, W. Jiang, M.J. Deen, “Calculation Of The Response Of Field-Effect Transistors To Charged Biological Molecules.” IEEE Sensors Journal, 7 (9), 1233–1242 (2007). [204] D. Landheer, G. Aers, W.R. McKinnon, M.J. Deen, J.C. Ranuarez, “Model For The Field Effect From Layers Of Biological Macromolecules On The Gates Of Metal-Oxide-Semiconductor Transistors.” Journal of Applied Physics, 98 (4), 44701 (2005). [205] W.R. McKinnon, D. Landheer, G. Aers, “Sensitivity Of Field-Effect Biosensors To Charge, PH, And Ion Concentration In A Membrane Model.” Journal of Applied Physics, 104 (12), 124701 (2009). [206] G.-J. Zhang, J.H. Chua, R.-E. Chee, A. Agarwal, S.M. Wong, K.D. Buddharaju, N. Balasubramanian, “Highly Sensitive Measurements Of PNA-DNA Hybridization Using Oxide-Etched Silicon Nanowire Biosensors.” Biosensors and Bioelectronics, 23 (11), 1701–1707 (2008). [207] M. Schwartz, T.C. Nguyen, X.T. Vu, P. Wagner, R. Thoelen, S. Ingebrandt, “Impedimetric Sensing Of DNA With Silicon Nanowire Transistors As Alternative Transducer Principle.” Physica Status Solidi (A): Applications and Materials Science, available online, 1700740 (2018). [208] A. Susloparova, D. Koppenhöfer, J.K.-Y. Law, X.T. Vu, S. Ingebrandt, “Electrical Cell-Substrate Impedance Sensing With Field Effect Transistors Is Able To Unravel Cellular Adhesion And Detachment Processes On A Single Cell Level.” Lab on a Chip, 15 (3), 668–679 (2012). [209] D. Koppenhöfer, A. Susloparova, D. Docter, R.H. Stauber, S. Ingebrandt, “Monitoring Nanoparticle Induced Cell Death In H441 Cells Using Field-Effect Transistors.” Biosensors and Bioelectronics, 40 (1), 89–95 (2012). [210] R.B.M. Schasfoort, G.J. Streekstra, P. Bergveld, R.P.H. Kooyman, J. Greve, “Influence Of An Immunological Precipitate On D.C. And A.C. Behaviour Of An ISFET.” Sensors and Actuators, 18 (2), 119–129 (1989). [211] M.M. Antonisse, B.H. Snellink-Ruël, R.J. Lugtenberg, J.F. Engbersen, A. van den Berg, D.N. Reinhoudt, “Membrane Characterization Of Anion-Selective CHEMFETs By Impedance Spectroscopy.” Analytical Chemistry, 72 (2), 343–348 (2000). [212] E. Katz, I. Willner, “Probing Biomolecular Interactions At Conductive And Semiconductive Surfaces By Impedance Spectroscopy: Routes To Impedimetric Immunosensors, DNA-Sensors, And Enzyme Biosensors.” Electroanalysis, 15 (11), 913–947 (2003). [213] R.J.W. Lugtenberg, R.J.M. Egberink, A. van den Berg, J.F.J. Engbersen, D.N. Reinhoudt, “The Effects Of Covalent Binding Of The Electroactive Components In Durable CHEMFET Membranes-Impedance Spectroscopy And Ion Sensitivity Studies.” Journal of Electroanalytical Chemistry, 452 (1), 69–86 (1998). [214] A.B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, I. Willner, “Enzyme Monolayer-Functionalized Field-Effect Transistors For Biosensor Applications.” Sensors and Actuators B, 70 (1–3), 222–231 (2000). [215] P. Bergveld, A. van den Berg, P.D. van der Wal, M. Skowronska-Ptasinska, E.J.R. Sudhölter, D.N. Reinhoudt, “How Electrical And Chemical Requirements For REFETs May Coincide.” Sensors and Actuators, 18 (3–4), 309–327 (1989). [216] A. Susloparova, D. Koppenhöfer, X.T. Vu, M. Weil, S. Ingebrandt, “Impedance Spectroscopy With Field-Effect Transistor Arrays For The Analysis Of Anti-Cancer Drug Action On Individual Cells.” Biosensors and Bioelectronics, 40 (1), 50–56 (2013). [217] T.C. Nguyen, X.T. Vu, M. Freyler, S. Ingebrandt, “PSPICE Model For Silicon Nanowire Field-Effect Transistor Biosensors In Impedimetric Measurement Mode.” Physica Status Solidi (A): Applications and Materials Science, 210 (5), 870–876 (2013). [218] A. Susloparova, X.T. Vu, D. Koppenhöfer, J.K.-Y. Law, S. Ingebrandt, “Investigation Of ISFET Device Parameters To Optimize For Impedimetric Sensing Of Cellular Adhesion.” Physica Status Solidi (A): Applications and Materials Science, 211 (6), 1395–1403 (2014). [219] A. Susloparova, D. Koppenhöfer, J.K.-Y. Law, X.T. Vu, S. Ingebrandt, “Electrical Cell-Substrate Impedance Sensing With Field-Effect Transistors Is Able To Unravel Cellular Adhesion And Detachment Processes On A Single Cell Level.” Lab on a Chip, 15 (3), 668–679 (2015). [220] M.L. Pourciel-Gouzy, W. Sant, I. Humenyuk, L. Malaquin, X. Dollat, P. Temple-Boyer, “Development Of PH-ISFET Sensors For The Detection Of Bacterial Activity.” Sensors and Actuators B: Chemical, 103 (1–2), 247–251 (2004). [221] W. Bunjongpru, O. Trithaveesak, K. Sowsuwan, W. Jeamsaksiri, C. Hruanun, A. Poyai, “CMOS Compatible Ion Sensitive Field Effect Transistor With Silicon Nitride Membrane For PH Measurement System.” 4th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 29–31 (2007). [222] P. Georgiou, C. Toumazou, “ISFET Characteristics In CMOS And Their Application To Weak-Inversion Operation.” Sensors and Actuators B: Chemical, 143 (1), 211–217 (2009). [223] S. Jamasb, S. Collins, R.L. Smith, “A Physical Model For Drift In PH ISFETs.” Sensors and Actuators B: Chemical, 49 (1–2), 146–155 (1998). [224] M.H. Abouzar, A. Poghossian, A.M. Pedraza, D. Gandhi, S. Ingebrandt, W. Moritz, M.J. Schöning, “An Array Of Field-Effect Nanoplate SOI Capacitors For (Bio-)Chemical Sensing.” Biosensors and Bioelectronics, 26 (6), 3023–3028 (2011). [225] Y. Chen, X. Wang, S. Erramilli, P. Mohanty, A. Kalinowski, “Silicon-Based Nanoelectronic Field-Effect PH Sensor With Local Gate Control.” Applied Physics Letters, 89 (22), 223512 (2006). [226] W.M. Siu, R.S.C. Cobbold, “Basic Properties Of The Electrolyte-SiO2-Si System: Physical And Theoretical Aspects.” IEEE Transactions on Electron Devices, 26 (11), 1805–1815 (1979). [227] L. Bousse, P. Bergveld, “The Role Of Buried OH Sites In The Response Mechanism Of Inorganic-Gate PH-Sensitive ISFETs.” Sensors and Actuators, 6 (1), 65–87 (1984). [228] N.F. de Rooij, P. Bergveld, “The Influence Of The PH On The Electrolyte-SiO2-Si System Studied By Ion-Sensitive Fet Measurements And Quasi-Static C-V Measurements.” Thin Solid Films, 71 (2), 327–331 (1980). [229] L. Bousse, “Single Electrode Potentials Related To Flat-Band Voltage Measurements On EOS And MOS Structures.” The Journal of Chemical Physics, 76 (10), 5128–5133 (1982). [230] T.C. Nguyen, M. Schwartz, X.T. Vu, J. Blinn, S. Ingebrandt, “Handheld Readout System For Field-Effect Transistor Biosensor Arrays For Label-Free Detection Of Biomolecules.” Physica Status Solidi (A): Applications and Materials Science, 212 (6), 1313–1319 (2015). [231] Y. Cui, Q. Wei, H. Park, C.M. Lieber, “Nanowire Nanosensors For Highly Sensitive And Selective Detection Of Biological And Chemical Species.” Science, 293 (5533), 1289–1292 (2001). [232] R. Tian, S. Regonda, J. Gao, Y. Liuc, W. Hu, “Ultrasensitive Protein Detection Using Lithographically Defined Si Multinanowire Field Effect Transistors.” Lab on a Chip, 11 (11), 1952–1961 (2011). [233] L.C.P.M. de Smet, D. Ullien, M. Mescher, E.J.R. Sudhölter, “Organic Surface Modification Of Silicon Nanowire-Based Sensor Devices.,” INTECH Open Access Publisher, Rijeka (2011). [234] R.N. Smith, M. McCormick, C.J. Barrett, L. Reven, H.W. Spiess, “NMR Studies Of PAH/PSS Polyelectrolyte Multilayers Adsorbed Onto Silica.” Macromolecules, 37 (13), 4830–4838 (2004). [235] M.H. Abouzar, A. Poghossian, A. Razavi, O.A. Williams, N. Bijnens, P. Wagner, M.J. Schöning, “Characterisation Of Capacitive Field-Effect Sensors With A Nanocrystalline-Diamond Film As Transducer Material For Multi-Parameter Sensing.” Biosensors and Bioelectronics, 24 (5), 1298–1304 (2009). [236] G. Decher, J. Schmitt, “Fine-Tuning Of The Film Thickness Of Ultrathin Multilayer Films Composed Of Consecutively Alternating Layers Of Anionic And Cationic Polyelectrolytes.” Progress in Colloid and Polymer Science, 89, 160–164 (1992). [237] S.S. Shiratori, M.F. Rubner, “PH-Dependent Thickness Behavior Of Sequentially Adsorbed Layers Of Weak Polyelectrolytes.” Macromolecules, 33 (11), 4213–4219 (2000). [238] A. Poghossian, M.J. Schöning, “Label-Free Sensing Of Biomolecules With Field-Effect Devices For Clinical Applications.” Electroanalysis, 26 (6), 1197–1213 (2014). [239] “Https://www.sciencetechblog.com.” A. Burgess (2011). [240] R.A. McCloy, S. Rogers, C.E. Aldon, T. Lorca, A. Castro, A. Burgess, “Partial Inhibition Of Cdk1 In G2 Phase Overrides The SAC And Decouples Mitotic Events.” Cell Cycle, 13 (9), 1400–1412 (2014). [241] A. Burgess, S. Vigneron, E. Brioudes, J.-C. Labbé, T. Lorca, A. Castro, “Loss Of Human Greatwall Results In G2 Arrest And Multiple Mitotic Defects Due To Deregulation Of The Cyclin B-Cdc2/PP2A Balance.” Proceedings of the National Academy of Sciences, 107 (28), 12564–12569 (2010). [242] I.D. Johnson, “Molecular Probes Handbook: A Guide To Fluorescent Probes And Labeling Technologies,” Life Technologies Corporation, Carlsbad, California (2010). [243] J.N. Israelachvili, “Intermolecular And Surface Forces,” Academic Press, Inc., Amsterdam (2011). [244] Y. Dong, S. V. Pappu, Z. Xu, “Detection Of Local Density Distribution Of Isolated Silanol Groups On Planar Silica Surfaces Using Nonlinear Optical Molecular Probes.” Analytical Chemistry, 70 (22), 4730–4735 (1998). [245] L.A. Chrisey, G.U. Lee, C.E. O’Ferrall, “Covalent Attachment Of Synthetic DNA To Self-Assembled Monolayer Films.” Nucleic Acids Research, 24 (15), 3031–3039 (1996). [246] J.P. Cloarec, J.R. Martina, C. Polychronakosc, I. Lawrenceb, M.F. Lawrenceb, E. Souteyranda, “Functionalization Of Si/SiO2 Substrates With Homooligonucleotides For A DNA Biosensor.” Sensors and Actuators B: Chemical, 58 (1–3), 394–398 (1999). [247] T. Sakata, M. Kamahori, Y. Miyahara, “Immobilization Of Oligonucleotide Probes On Si3N4 Surface And Its Application To Genetic Field Effect Transistor.” Materials Science and Engineering: C, 24 (6–8), 827–832 (2004). [248] M. Schwartz, T.C. Nguyen, X.T. Vu, M. Weil, J. Wilhelm, P. Wagner, R. Thoelen, S. Ingebrandt, “DNA Detection With Top-Down Fabricated Silicon Nanowire Transistor Arrays In The Linear Operation Regime.” Physica Status Solidi (A): Applications and Materials Science, 213 (6), 1510–1519 (2016). [249] A. Kim, C.S. Ah, C.W. Park, J.-H. Yang, T. Kim, C.-G. Ahn, S.H. Park, G.Y. Sung, “Direct Label-Free Electrical Immunodetection In Human Serum Using A Flow-Through-Apparatus Approach With Integrated Field-Effect Transistors.” Biosensors and Bioelectronics, 25 (7), 1767–1773 (2010). [250] A. Poghossian, A. Cherstvy, S. Ingebrandt, A. Offenhäusser, M.J. Schöning, “Possibilities And Limitations Of Label-Free Detection Of DNA Hybridization With Field-Effect-Based Devices.” Sensors and Actuators B: Chemical, 111–112 470–480 (2005). [251] P. Xie, Q. Xiong, Y. Fang, Q. Qing, C.M. Lieber, “Local Electrical Potential Detection Of DNA By Nanowire-nanopore Sensors.” Nature Nanotechnology, 7 (2), 119–125 (2012). [252] “Http://www.graphpad.com/.” GraphPad Software Inc. (2017). [253] “Http://www.statstutor.ac.uk/.” Sheer, R. (2004). [254] “Https://stats.idre.ucla.edu/.” UCLA: Statistical Consulting Group (2017). [255] T.C. Nguyen, “Readout Concepts For Label-Free Biomolecule Detection With Advanced ISFET And Silicon Nanowire Biosensors,” PhD Thesis, Department of Electrical and Computer Engineering, University of Kaiserslautern (2017). [256] Y. Liu, R.W. Dutton, “Effects Of Charge Screening And Surface Properties On Signal Transduction In Field Effect Nanowire Biosensors.” Journal of Applied Physics, 106 (1), 14701–14708 (2009). [257] R.B.M. Schasfoort, P. Bergveld, R.P.H. Kooyman, J. Greve, “Possibilities And Limitations Of Direct Detection Of Protein Charges By Means Of An Immunological Field-Effect Transistor.” Analytica Chimica Acta, 238 323–329 (1990). [258] L. De Vico, L. Iversen, M.H. Sorensen, M. Brandbyge, J.Nygard, K.L. Martinez, J.H. Jensen, “Predicting And Rationalizing The Effect Of Surface Charge Distribution And Orientation On Nano-Wire Based FET Bio-Sensors.” Nanoscale, 3 (9), 3635–3640 (2011). [259] M.W. Shinwari, M.J. Deen, “Impedance Modelling Of FET-Based Biosensors.” Journal of the Electrochemical Society, 158 (6), J189–J194 (2011). [260] S. Das, “Explicit Interrelationship Between Donnan And Surface Potentials And Explicit Quantification Of Capacitance Of Charged Soft Interfaces With PH-Dependent Charge Density.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 69–74 (2014). [261] K. Heileman, J. Daoud, M. Tabrizian, “Dielectric Spectroscopy As A Viable Biosensing Tool For Cell And Tissue Characterization And Analysis.” Biosensors and Bioelectronics, 49, 348–359 (2013). [262] S.L. Patterson, T. Abel, T.A.S. Deuel, K.C. Martin, J.C. Rose, E.R. Kandel, “Recombinant BDNF Rescues Deficits In Basal Synaptic Transmission And Hippocampal LTP In BDNF Knockout Mice.” Neuron, 16 (6), 1137–1145 (1996). [263] I. Bertini, H.B. Gray, S.J. Lippard, J.S. Valentine, “Bioinorganic Chemistry,” University Science Book, Mill Valley, California (1994). [264] U.E. Lang, R. Hellweg, J. Gallinat, “BDNF Serum Concentrations In Healthy Volunteers Are Associated With Depression-Related Personality Traits.” Neuropsychopharmacology, 29 (4), 795–798 (2004). [265] K.M. Chang, C.T. Chang, K.M. Chan, “Development Of An Ion Sensitive Field Effect Transistor Based Urea Biosensor With Solid State Reference Systems.” Sensors, 10 (6), 6115–6127 (2010). [266] K.-M. Chang, C.-T. Chang, K.-Y. Chao, J.-L. Chen, “Development Of FET-Type Reference Electrodes For PH-ISFET Applications.” Journal of the Electrochemical Society, 157 (5), J143–J148 (2010). [267] D. Borstlap, “High-k Dielectrics As Bioelectronic Interface For Field-Effect Transistors,” PhD Thesis, Mathematik, Informatik und Naturwissenschaften, Rheinisch-Westfälische Technische Hochschule Aachen (2006). [268] “Http://www.mathwords.com/a/area_under_a_curve.htm.” Simmons, B. (2017). [269] M. Crescentini, M. Rossi, P. Ashburn, M. Lombardini, E. Sangiorgi, H. Morgan, M. Tartagni, “AC And Phase Sensing Of Nanowires For Biosensing.” Biosensors, 6 (2), 1–14 (2016). [270] P. Verboon, “Graphical Tools In Multivariate Analysis.” Report, Department of Human and Computer Studies, University of Leiden (1988). [271] J.H.S. Dayal, M.J. Sales, W.E. Corver, C.A. Purdie, L.B. Jordan, P.R. Quinlan, L. Baker, N.T. Haar, “Multiparameter DNA Content Analysis Identifies Distinct Groups In Primary Breast Cancer.” British Journal of Cancer, 108 (4), 873–880 (2013). [272] A. Lichtenstein, E. Havivi, R. Shacham, E. Hahamy, R. Leibovich, A. Pevzner, V. Krivitsky, G. Davivi, I. Presman, R. Elnathan, Y. Engel, E. Flaxer, F. Patolsky, “Supersensitive Finngerprinting Of Explosives By Chemically Modified Nanosensors Arrays.” Nature Communications, 5 (4195), 1–12 (2014). [273] M.J. Saary, “Radar Plots: A Useful Way For Presenting Multivariate Health Care Data.” Journal of Clinical Epidemiology, 60 (4), 311–317 (2008). [274] Rory Adams, “Machine Learning For Predicitve Modelling.” Matlab Expo 2015, United Kingdom (2015). [275] “Http://de.mathworks.com/help/stats/supervised-learning-machine-learning-workflow-and-algorithms.html.” The MathWorks Inc. (2016). [276] “Http://de.mathworks.com/help/stats/classification-trees-and-regression-trees.html.” The MathWorks Inc. (2016). [277] “Http://de.mathworks.com/help/stats/train-decision-trees-in-classification-learner-app.html.” The MathWorks Inc. (2016). [278] N. Bhalla, P. Jolly, N. Formisano, P. Estrela, “Introduction To Biosensors.” Essays in Biochemistry, 60, 1–8 (2016). [279] “Https://www.talend.com/blog/2017/05/15/testing-machine-learning-algorithms-with-k-fold-cross-validation/.” Krupa, Norbert (2017). [280] “Https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f.” Gupta, Prashant (2017). [281] “Https://de.mathworks.com/discovery/cross-validation.html.” The MathWorks Inc. (2018). [282] G.-J. Zhang, A. Agarwal, K.D. Buddharaju, S. Navab, Z. Gao, “Highly Sensitive Sensors For Alkali Metal Ions Based On Complementarymetal-Oxide-Semiconductor-Compatible Silicon Nanowires.” Applied Physics Letters, 90 (23), 233903 (2007). [283] N.N. Mishra, W.C. Maki, E. Cameron, R. Nelson, P. Winterrowd, S.K. Rastogi, B. Filanoski, G.K. Maki, “Ultra-Sensitive Detection Of Bacterial Toxin With Silicon Nanowire Transistor.” Lab on a Chip, 8 (6), 868–871 (2008). [284] A. Ram, A. Lichtenstein, X.-T. Vu, J.K.-Y. Law, M. Schwartz, J. Wilhelm, T.C. Nguyen, “Nanoelectronic Sensor Pixel.,” Patent (2016).-
local.type.specifiedPhd thesis-
item.fulltextWith Fulltext-
item.fullcitationSchwartz, Miriam (2018) Detection of biomolecules using multivariant data analysis from silicon nanowire field-effect transistor arrays.-
item.contributorSchwartz, Miriam-
item.accessRightsOpen Access-
Appears in Collections:PhD theses
Research publications
Files in This Item:
File Description SizeFormat 
PhD thesis_Schwartz Miriam.pdf6.38 MBAdobe PDFView/Open
Show simple item record

Page view(s)

1,284
checked on Sep 7, 2022

Download(s)

14
checked on Sep 7, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.