Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/25912
Title: Generating Artificial Data for Empirical Analysis of Control-flow Discovery Algorithms: A Process Tree and Log Generator
Authors: JOUCK, Toon 
DEPAIRE, Benoit 
Issue Date: 2018
Publisher: SPRINGER VIEWEG-SPRINGER FACHMEDIEN WIESBADEN GMBH
Source: Business & Information Systems Engineering, 61(6), p.695-712.
Abstract: Within the process mining domain, research on comparing control-flow (CF) discovery techniques has gained importance. A crucial building block of empirical analysis of CF discovery techniques is getting the appropriate evaluation data. Currently, there is no answer to the question of how to collect such evaluation data. This paper introduces a methodology for generating artificial event data (GED) and an implementation called the Process Tree and Log Generator. The GED methodology and its implementation provide users with full control over the characteristics of the generated event data and an integration within the ProM framework. Unlike existing approaches, there is no tradeoff between including long-term dependencies and soundness of the process. The contributions of this paper provide a necessary step in the empirical analysis of CF discovery algorithms.
Keywords: Artificial event logs;Process discovery;Empirical analysis
Document URI: http://hdl.handle.net/1942/25912
ISSN: 1867-0202
DOI: 10.1007/s12599-018-0541-5
ISI #: WOS:000496706700005
Rights: Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018
Category: A1
Type: Journal Contribution
Validations: ecoom 2020
vabb 2020
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
PTandLogGenerator.pdf
  Restricted Access
Peer-reviewed author version836.28 kBAdobe PDFView/Open    Request a copy
Jouck-Depaire2018_Article_GeneratingArtificialDataForEmp.pdf
  Restricted Access
Published version1.24 MBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

3
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

4
checked on May 29, 2022

Page view(s)

118
checked on May 20, 2022

Download(s)

122
checked on May 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.