Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26069
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVERHASSELT, Anneleen-
dc.contributor.advisorGijbels, Irène-
dc.contributor.authorIBRAHIM, Mohammed Abdulkerim-
dc.date.accessioned2018-06-19T07:33:10Z-
dc.date.available2018-06-19T07:33:10Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/1942/26069-
dc.description.abstractIn this dissertation, quantile regression in varying coefficient models using a nonparametric technique called P-splines is investigated. In mean regression, we study the influence of the covariates on the conditional mean of the response. An alternative way to study the central location is median regression which is robust to heavy-tailed distributions. Quantile regression is a generalization of median regression to investigate the influence of the covariates on the quantiles/percentiles (entire distribution) of the response. It allows for a wide range of applications. For instance, investigating the 25th percentile of the response (e.g. weight of the child) might be of interest in studying severe malnutrition in children. In order to find the estimates, we need to minimize a quantile objective function. In contrast to that of mean regression, the objective function for quantile regression is not differentiable everywhere. Hence, the coefficient estimates have no explicit expression. A varying coefficient model is an extension of a classical linear regression model, where each coefficient is varying with another variable. This model is important when we have a complex data setting like longitudinal data. In such data scheme, it is intuitive to allow the coefficients to vary with `time'. We consider, in particular, a location-scale varying coefficient model. The key statistical tools are introduced in Chapter 1. Population conditional quantiles cannot cross for different quantile levels (percentiles). However, individual conditional quantile estimators can cross each other. To avoid these crossings, we use an approach called `AHe' (based on two assumptions). This approach enables us to estimate the scale (variability function), and by doing so estimate several quantiles with less computational time. In Chapter 2, we show the consistency of the proposed estimator theoretically and illustrate it in a simulation study. Since estimation of the quantiles other than the median relies on the variability function, it is important to identify the correct structure of the variability function (e.g. homoscedastic or time varying). Under a homoscedastic variability structure, we can conclude that the influence of the covariates on all other quantiles of the response is similar to that of the median. We develop a testing procedure (Likelihood-Ratio-Type test) to investigate the structure of the variability function. The performance of the testing procedure is shown in the simulation study. The estimation and testing procedures are illustrated on data examples. In Chapter 3, we focus on testing the shape of a coefficient function (e.g. constant, monotone or convex). Several testing procedures are proposed. A monotonicity test is important to check, for example, that the weight of a child is decreasing at some point in time. The performance of the testing procedures is illustrated in a simulation study. An application to a data example also illustrates the use of the procedures. To further simplify the model, in Chapter 4, two types of variable selection techniques called `grouped Adaptive Lasso' and `NonNegative Garrote' are proposed. The performance of these techniques is illustrated in a simulation study. In Chapter 5, we also propose another two-stage variable selection technique called NNG_SIS, in an ultrahigh-dimensional setting (when the number of coefficients to estimate is possibly much bigger than the number of observations). Simulation studies illustrate the performance of the procedures. We also demonstrate the use of the methods on data examples. Chapter 6 draws some conclusions with discussion of possible future perspectives. The R-code to implement the methodology developed in this dissertation is presented in Appendix A.-
dc.description.sponsorshipThe Special Research Fund (Bijzonder Onderzoeksfonds) of Hasselt University-
dc.language.isoen-
dc.subject.otheradaptive lasso; heteroscedasticity; likelihood-ratio test; non-negative garrote; penalized splines; qualitative shape testing; quantile regression; varying coefficient models-
dc.titleQuantile regression in heteroscedastic varying coefficient models: testing and variable selection-
dc.typeTheses and Dissertations-
local.format.pages167-
local.bibliographicCitation.jcatT1-
dc.relation.referencesAhkim, M., Gijbels, I., and Verhasselt, A. (2017). Shape testing in varying coe cient models. TEST, 26(2):429{450. Ahkim, M. and Verhasselt, A. (2018). Testing for constancy in varying coe cient models. Communications in Statistics-Theory and Methods, 47(4):890{911. Andriyana, Y. (2015). P-splines quantile regression in varying coe cient models. PhD Dissertation KU Leuven, Belgium. ISBN 978-90-8649-791-1. Andriyana, Y. and Gijbels, I. (2017). Quantile regression in heteroscedastic varying coe cient models. AStA Advances in Statistical Analysis, 101(2):151{176. Andriyana, Y., Gijbels, I., and Verhasselt, A. (2014). P-splines quantile regression estimation in varying coe cient models. TEST, 23(1):153{194. Andriyana, Y., Gijbels, I., and Verhasselt, A. (2016). Quantile regression in varyingcoe cient models: non-crossing quantile curves and heteroscedasticity. Statistical Papers, DOI: 10.1007/s00362-016-0847-7. Available from: http://link. springer.com/article/10.1007/s00362-016-0847-7. Andriyana, Y., Ibrahim, M. A., Gijbels, I., and Verhasselt, A. (2018). QRegVCM: Quantile Regression in Varying-Coe cient Models. R package version 1.2. Antoniadis, A., Gijbels, I., and Lambert-Lacroix, S. (2014). Penalized estimation in additive varying coe cient models using grouped regularization. Statistical Papers, 55(3):727{750. Antoniadis, A., Gijbels, I., and Verhasselt, A. (2012a). Variable Selection in Additive Models Using P-Splines. Technometrics, 54(4):425{438. Antoniadis, A., Gijbels, I., and Verhasselt, A. (2012b). Variable Selection in Varying- Coe cient Models Using P-Splines. Journal of Computational and Graphical Statistics, 21(3):638{661. Arellano, M. and Bond, S. (1991). Some Tests of Speci cation for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. The Review of Economic Studies, 58(2):277{297. Belloni, A. and Chernozhukov, V. (2011). l1-penalized quantile regression in highdimensional sparse models. The Annals of Statistics, 39(1):82{130. Bollaerts, K., Eilers, P. H., and Aerts, M. (2006). Quantile regression with monotonicity restrictions using P-splines and the L1-norm. Statistical Modelling, 6(3):189{207. Bowman, A., Jones, M., and Gijbels, I. (1998). Testing Monotonicity of Regression. Journal of Computational and Graphical Statistics, 7(4):489{500. Bradic, J., Fan, J., and Wang, W. (2011). Penalized composite quasi-likelihood for ultrahigh dimensional variable selection. Journal of the Royal Statistical Society, Series B, 73(3):325{349. Breiman, L. (1995). Better Subset Regression Using the Nonnegative Garrote. Technometrics, 37(4):373{384. B uhlmann, P. (2006). Boosting for high-dimensional linear models. The Annals of Statistics, 34(2):559{583. Cai, Z. and Xu, X. (2008). Nonparametric Quantile Estimations for Dynamic Smooth Coe cient Models. Journal of the American Statistical Association, 103(484):1595{ 1608. Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6):2313{2351. Chaudhuri, P. (1991). Global nonparametric estimation of conditional quantile functions and their derivatives. Journal of Multivariate Analysis, 39(2):246{269. Chen, Y., Bai, Y., and Fung, W. (2017). Structural identi cation and variable selection in high-dimensional varying-coe cient models. Journal of Nonparametric Statistics, 29(2):258{279.Cheng, M.-Y., Honda, T., and Zhang, J.-T. (2016). Forward Variable Selection for Sparse Ultra-High Dimensional Varying Coe cient Models. Journal of the American Statistical Association, 111(515):1209{1221. Claeskens, G., Krivobokova, T., and Opsomer, J. D. (2009). Asymptotic properties of penalized spline estimators. Biometrika, 96(3):529{544. Croissant, Y. and Millo, G. (2008). Panel Data Econometrics in R: The plm Package. Journal of Statistical Software, 27(2):1{43. Available from: http: //www.jstatsoft.org/v27/i02/. Das, P. and Ghosal, S. (2017). Analyzing ozone concentration by Bayesian spatiotemporal quantile regression. Environmetrics, 28(4):e2443{n/a. Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measurement Data. Monographs on statistics and applied probability 62. Chapman & Hall/CRC, New York. De Backer, M., Ghouch, A. E., and Van Keilegom, I. (2018). An Adapted Loss Function for Censored Quantile Regression. Journal of the American Statistical Association, DOI: 10.1080/01621459.2018.1469996. Available from: https://www. tandfonline.com/doi/full/10.1080/01621459.2018.1469996. de Boor, C. (2001). A Practical Guide to Splines, revised Edition. Applied Mathematical Sciences 27. Springer-Verlag, New York. Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2):89{121. Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96(456):1348{1360. Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society, Series B, 70(5):849{911. Feng, X. and Zhu, L. (2016). Estimation and Testing of Varying Coe cients in Quantile Regression. Journal of the American Statistical Association, 111(513):266{ 274. Fenske, N., Kneib, T., and Hothorn, T. (2011). Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression. Journal of the American Statistical Association, 106(494):494{510. Fortin, M., Daigle, G., Ung, C.-H., B egin, J., and Archambault, L. (2007). A variancecovariance structure to take into account repeated measurements and heteroscedasticity in growth modeling. European Journal of Forest Research, 126(4):573{585. Geraci, M. and Bottai, M. (2014). Linear quantile mixed models. Statistics and computing, 24(3):461{479. Ghosal, S., Sen, A., and van der Vaart, A. W. (2000). Testing monotonicity of regression. The Annals of statistics, 28(4):1054{1082. Gijbels, I., Ibrahim, M. A., and Verhasselt, A. (2017). Shape testing in quantile varying coe cient models with heteroscedastic error. Journal of Nonparametric Statistics, 29(2):391{406. Gijbels, I., Ibrahim, M. A., and Verhasselt, A. (2018). Testing the heteroscedastic error structure in quantile varying coe cient models. The Canadian Journal of Statistics, 46(2):246{264. Gijbels, I. and Verhasselt, A. (2010). P-splines regression smoothing and di erence type of penalty. Statistics and Computing, 20(4):499{511. Gijbels, I., Verhasselt, A., and Vrinssen, I. (2015). Variable selection using P-splines. Wiley Interdisciplinary Reviews: Computational Statistics, 7(1):1{20. Grant, M. C. and Boyd, S. P. (2012). The CVX Users' Guide. CVX Research, Inc. Grunfeld, Y. (1958). The determinant of corporate investment. PhD Dissertation Department of Economic, University of Chicago, USA. Guo, C., Yang, H., and Lv, J. (2017). Robust variable selection in high-dimensional varying coe cient models based on weighted composite quantile regression. Statistical Papers, 58(4):1009{1033. Hastie, T. and Tibshirani, R. (1993). Varying-Coe cient Models. Journal of the Royal Statistical Society, Series B, 55(4):757{796. He, X. (1997). Quantile Curves without Crossing. The American Statistician, 51(2):186{192. He, X. and Ng, P. (1999). COBS: qualitatively constrained smoothing via linear programming. Computational Statistics, 14(3):315{337. He, X., Ng, P., and Portnoy, S. (1998). Bivariate quantile smoothing splines. Journal of the Royal Statistical Society, Series B, 60(3):537{550. He, X. and Shi, P. (1994). Convergence rate of b-spline estimators of nonparametric conditional quantile functions. Journal of Nonparametric Statistics, 3(3-4):299{308. He, X. and Shi, P. (1998). Monotone B-Spline Smoothing. Journal of the American Statistical Association, 93(442):643{650. He, X., Wang, L., and Hong, H. G. (2013). Quantile-adaptive model-free variable screening for high-dimensional heterogeneous data. The Annals of Statistics, 41(1):342{369. Honda, T. (2004). Quantile regression in varying coe cient models. Journal of Statistical Planning and Inference, 121(1):113{125. Honda, T., Ing, C.-K., and Wu, W.-Y. (2017). Adaptively weighted group lasso for semiparametric quantile regression models. Discussion Papers 2017-04, Graduate School of Economics, Hitotsubashi University. Available from: https: //EconPapers.repec.org/RePEc:hit:econdp:2017-04. Huang, J., Horowitz, J. L., and Wei, F. (2010). Variable selection in nonparametric additive models. The Annals of statistics, 38(4):2282{2313. Huang, J., Wei, F., and Ma, S. (2012). Semiparametric Regression Pursuit. Statistica Sinica, 22(4):1403{1426. Huang, J. Z., Wu, C. O., and Zhou, L. (2002). Varying-coe cient models and basis function approximations for the analysis of repeated measurements. Biometrika, 89(1):111{128. Ibrahim, M. A. and Verhasselt, A. (2018a). A two-stage screening and variable selection method in ultrahigh-dimensional quantile varying coe cient models with heteroscedastic error. Submitted. Ibrahim, M. A. and Verhasselt, A. (2018b). Variable selection in quantile varying coe cient models with heteroscedastic error. Submitted. Jiang, X., Jiang, J., and Song, X. (2012). Oracle model selection for nonlinear models based on weighted composite quantile regression. Statistica Sinica, 22(4):1479{1506. Kai, B., Li, R., and Zou, H. (2011). New e cient estimation and variable selection methods for semiparametric varying-coe cient partially linear models. The Annals of Statistics, 39(1):305{332. Karlsson, M. and Lindmark, A. (2014). truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models. Journal of Statistical Software, 57(14):1{19. Kaslow, R. A., Ostrow, D. G., Detels, R., Phair, J. P., Polk, B. F., and Rinaldo, C. R. (1987). The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. American Journal of Epidemiology, 126(2):310{318. Kim, M.-O. (2006). Quantile Regression with Shape-Constrained Varying Coe cients. Sankhy a: The Indian Journal of Statistics, 68(3):369{391. Kim, M.-O. (2007). Quantile regression with varying coe cients. The Annals of Statistics, 35(1):92{108. Kleiber, C. and Zeileis, A. (2008). Applied Econometrics with R. Springer-Verlag, New York. Available from: https://CRAN.R-project.org/package=AER. Knight, K. (1999). Asymptotics for L1-estimators of regression parameters under heteroscedasticity. The Canadian Journal of Statistics, 27(3):497{507. Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91(1):74{89. Koenker, R. (2005). Quantile Regression. Cambridge University Press, New York. Koenker, R. (2011). Additive models for quantile regression: Model selection and con dence bandaids. Brazilian Journal of Probability and Statistics, 25(3):239{262. Koenker, R. and Bassett, Jr., G. (1978). Regression Quantiles. Econometrica, 46(1):33{50. Koenker, R. and Ng, P. (2003). SparseM: A Sparse Matrix Package for R *. Journal of Statistical Software, 8(6):1{9. Koenker, R. and Ng, P. (2005). A Frisch-Newton Algorithm for Sparse Quantile Regression. Acta Mathematicae Applicatae Sinica, English Series, 21(2):225{236. Koenker, R., Ng, P., and Portnoy, S. (1994). Quantile smoothing splines. Biometrika, 81(4):673{680. Koenker, R., Portnoy, S., Ng, P. T., Zeileis, A., Grosjean, P., and Ripley, B. D. (2017). quantreg: Quantile Regression. R package version 5.33. Kolar, M., Song, L., and Xing, E. P. (2009). Sparsistent Learning of Varyingcoe cient Models with Structural Changes. Proceedings of theAdvances in Neural Information Processing Systems, 22:1006{1014. Lebarbier, E. (2005). Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Processing, 85(4):717{736. Lee, E. R., Noh, H., and Park, B. U. (2014). Model Selection via Bayesian Information Criterion for Quantile Regression Models. Journal of the American Statistical Association, 109(505):216{229. Lee, S., Liao, Y., Seo, M. H., and Shin, Y. (2017). Oracle Estimation of a Change Point in High Dimensional Quantile Regression. Journal of the American Statistical Association, DOI: 10.1080/01621459.2017.1319840. Available from: http://dx. doi.org/10.1002/cjs.11346. Li, J., Li, Y., and Zhang, R. (2017). B spline variable selection for the single index models. Statistical Papers, 58(3):691{706. Li, N., Xu, X., and Liu, X. (2011). Testing the constancy in varying-coe cient regression models. Metrika, 74(3):409{438. Li, Y. and Zhu, J. (2008). L1-norm quantile regression. Journal of Computational and Graphical Statistics, 17(1):163{185. Lian, H., Liang, H., and Carroll, R. J. (2015). Variance function partially linear single-index models. Journal of the Royal Statistical Society, Series B, 77(1):171{ 194. Lin, C.-Y., Bondell, H., Zhang, H. H., and Zou, H. (2013). Variable selection for non-parametric quantile regression via smoothing spline analysis of variance. Stat, 2(1):255{268. Ma, S., Song, Q., Wang, L., et al. (2013). Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data. Bernoulli, 19(1):252{274. McKeague, I. W., Subramanian, S., and Sun, Y. (2001). Median regression and the missing information principle. Journal of Nonparametric Statistics, 13(5):709{727. Meinshausen, N. and B uhlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34(3):1436{1462. Mu, J., Wang, G., and Wang, L. (2018). Estimation and inference in spatially varying coe cient models. Environmetrics, 29(1):e2485{n/a. Murnane, R. J., Willett, J. B., and Boudett, K. P. (1999). Do male dropouts bene t from obtaining a GED, postsecondary education, and training? Evaluation Review, 23(5):475{503. Noh, H., Chung, K., and Van Keilegom, I. (2012). Variable selection of varying coe cient models in quantile regression. Electronic Journal of Statistics, 6:1220{ 1238. Noh, H. S. and Park, B. U. (2010). Sparse varying coe cient models for longitudinal data. Statistica Sinica, 20(3):1183{1202. Park, S., He, X., and Zhou, S. (2017). Dantzig-type penalization for multiple quantile regression with high dimensional covariates. Statistica Sinica, 27(4):1619{1638. Portnoy, S. (2003). Censored Regression Quantiles. Journal of the American Statistical Association, 98(464):1001{1012. Portnoy, S. and Koenker, R. (1997). The Gaussian Hare and the Laplacian Tortoise: Computability of Squared-Error versus Absolute-Error Estimators. Statistical Science, 12(4):279{300. Reich, B. J. (2012). Spatiotemporal quantile regression for detecting distributional changes in environmental processes. Journal of the Royal Statistical Society, Series C, 61(4):535{553. Reich, B. J., Bondell, H. D., and Wang, H. J. (2010). Flexible Bayesian quantile regression for independent and clustered data. Biostatistics, 11(2):337{352. Schnabel, S. K. and Eilers, P. H. (2013). Simultaneous estimation of quantile curves using quantile sheets. AStA Advances in Statistical Analysis, 97(1):77{87. Schumaker, L. (1981). Spline Functions: Basic Theory. Wiley, New York. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461{464. Stone, C. J. (1982). Optimal Global Rates of Convergence for Nonparametric Regression. The Annals of Statistics, 10(4):1040{1053. Tang, Y., Song, X., Wang, H. J., and Zhu, Z. (2013a). Variable selection in highdimensional quantile varying coe cient models. Journal of Multivariate Analysis, 122:115{132. Tang, Y., Wang, H. J., and Zhu, Z. (2013b). Variable selection in quantile varying coe cient models with longitudinal data. Computational Statistics & Data Analysis, 57(1):435{449. Tang, Y., Wang, H. J., Zhu, Z., and Song, X. (2012). A uni ed variable selection approach for varying coe cient models. Statistica Sinica, 22(2):601{628. Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58(1):267{288. Vaes, B., Beke, E., Truyers, C., Elli, S., Buntinx, F., Verbakel, J. Y., Goderis, G., and Van Pottelbergh, G. (2015). The correlation between blood pressure and kidney function decline in older people: a registry-based cohort study. BMJ open, 5(6):e007571. Van Keilegom, I. and Wang, L. (2010). Semiparametric modeling and estimation of heteroscedasticity in regression analysis of cross-sectional data. Electronic Journal of Statistics, 4:133{160. Wang, H. (2009). Forward Regression for Ultra-High Dimensional Variable Screening. Journal of the American Statistical Association, 104(488):1512{1524. Wang, H. and Xia, Y. (2009). Shrinkage Estimation of the Varying Coe cient Model. Journal of the American Statistical Association, 104(486):747{757. Wang, H. J. and Wang, L. (2009). Locally Weighted Censored Quantile Regression. Journal of the American Statistical Association, 104(487):1117{1128. Wang, H. J., Zhu, Z., and Zhou, J. (2009). Quantile regression in partially linear varying coe cient models. The Annals of Statistics, 37(6B):3841{3866. Wang, J. C. and Meyer, M. C. (2011). Testing the monotonicity or convexity of a function using regression splines. The Canadian Journal of Statistics, 39(1):89{107. Wang, K. and Lin, L. (2014). Variable selection in robust semiparametric modeling for longitudinal data. Journal of the Korean Statistical Society, 43(2):303{314. Wang, K. and Sun, X. (2017). E cient parameter estimation and variable selection in partial linear varying coe cient quantile regression model with longitudinal data. Statistical Papers, DOI: 10.1007/s00362-017-0970-0. Available from: https://doi. org/10.1007/s00362-017-0970-0. Wang, L., Wu, Y., and Li, R. (2012). Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension. Journal of the American Statistical Association, 107(497):214{222. Wang, L., Xue, L., Qu, A., and Liang, H. (2014). Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates. The Annals of Statistics, 42(2):592{624. Wei, F., Huang, J., and Li, H. (2011). Variable selection and estimation in highdimensional varying-coe cient models. Statistica Sinica, 21(4):1515{1540. Winter, H., Adelhardt, S., Jerak, A., and K uchenho , H. (2002). Characterization of cataclastic shear-zones of the KTB deep drill hole by regression analysis of drill cuttings data. Geophysical Journal International, 150(1):1{9. Wu, T. Z., Yu, K., and Yu, Y. (2010). Single-index quantile regression. Journal of Multivariate Analysis, 101(7):1607{1621. Wu, Y. and Liu, Y. (2009a). Stepwise multiple quantile regression estimation using non-crossing constraints. Statistics and its Interface, 2(3):299{310. Wu, Y. and Liu, Y. (2009b). Variable selection in quantile regression. Statistica Sinica, 19(2):801{817. Xue, L. (2009). Consistent variable selection in additive models. Statistica Sinica, 19(3):1281{1296. Xue, L. and Qu, A. (2012). Variable Selection in High-dimensional Varying-coe cient Models with Global Optimality. Journal of Machine Learning Research, 13(1):1973{ 1998. Yang, H., Guo, C., and Lv, J. (2016). Variable selection for generalized varying coe cient models with longitudinal data. Statistical Papers, 57(1):115{132. Ying, Z., Jung, S.-H., andWei, L.-J. (1995). Survival Analysis with Median Regression Models. Journal of the American Statistical Association, 90(429):178{184. Zhang, H.-G. and Mei, C.-L. (2012). SiZer Inference for varying coe cient models. Communications in Statistics-Simulation and Computation, 41(10):1944{1959. Zhang, H.-G., Mei, C.-L., and Wang, H.-L. (2013). Robust SiZer Approach for Varying Coe cient Models. Mathematical Problems in Engineering, 2013(Article ID 547874):DOI: 10.1155/2013/547874. Available from: http://dx.doi.org/ 10.1155/2013/547874. Zhang, L., Wang, H. J., and Zhu, Z. (2014). Testing for change points due to a covariate threshold in quantile regression. Statistica Sinica, 24:1859{1877. Zhao, W., Zhang, R., Lv, Y., and Liu, J. (2013). Variable selection of the quantile varying coe cient regression models. Journal of the Korean Statistical Society, 42(3):343{358. Zhao, Z. and Xiao, Z. (2014). E cient regressions via optimally combining quantile information. Econometric theory, 30(6):1272{1314. Zheng, Q., Gallagher, C., and Kulasekera, K. (2013). Adaptive penalized quantile regression for high dimensional data. Journal of Statistical Planning and Inference, 143(6):1029{1038. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476):1418{1429. Zou, H. and Li, R. (2008). One-Step Sparse Estimates in Nonconcave Penalized Likelihood Models. The Annals of Statistics, 36(4):1509{1533. Zou, H. and Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. The Annals of Statistics, 36(3):1108{1126. Zou, H. and Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number of parameters. The Annals of statistics, 37(4):1733{1751.-
local.type.refereedNon-Refereed-
local.type.specifiedPhd thesis-
local.type.programmeVSC-
item.accessRightsOpen Access-
item.contributorIBRAHIM, Mohammed Abdulkerim-
item.fulltextWith Fulltext-
item.fullcitationIBRAHIM, Mohammed Abdulkerim (2018) Quantile regression in heteroscedastic varying coefficient models: testing and variable selection.-
Appears in Collections:PhD theses
Research publications
Files in This Item:
File Description SizeFormat 
Doctoralthesis_MAIbrahim_digital.pdf1.34 MBAdobe PDFView/Open
Show simple item record

Page view(s)

80
checked on Sep 6, 2022

Download(s)

70
checked on Sep 6, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.