Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/26395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAa, Tom Vander-
dc.contributor.authorChakroun, Imen-
dc.contributor.authorHABER, Tom-
dc.date.accessioned2018-07-20T14:53:55Z-
dc.date.available2018-07-20T14:53:55Z-
dc.date.issued2017-
dc.identifier.citationKoumoutsakos, Petros; Lees, Michael; Krzhizhanovskaya, Valeria; Dongarra, Jack; Sloot, Peter M. A. (Ed.). International Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, Elsevier Science BV, p. 1030-1039-
dc.identifier.issn1877-0509-
dc.identifier.urihttp://hdl.handle.net/1942/26395-
dc.description.abstractUsing the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used on large scale data because of the prohibitive cost. In this paper, we propose a distributed high-performance parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We show by using efficient load balancing using work stealing on a single node, and by using asynchronous communication in the distributed version we beat state of the art implementations. (C) 2017 The Authors. Published by Elsevier B.V.-
dc.description.sponsorshipThis work is partly funded by the European project ExCAPE with reference 671555.-
dc.language.isoen-
dc.publisherElsevier Science BV-
dc.relation.ispartofseriesProcedia Computer Science-
dc.rights2017 The Authors. Published by Elsevier B.V.-
dc.subject.otherProbabilistic matrix factorization algorithm-
dc.subject.otherCollaborative filtering-
dc.subject.otherMachine learning-
dc.subject.otherPGAS-
dc.subject.othermulti-core-
dc.titleDistributed Bayesian Probabilistic Matrix Factorization-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsKoumoutsakos, Petros-
local.bibliographicCitation.authorsLees, Michael-
local.bibliographicCitation.authorsKrzhizhanovskaya, Valeria-
local.bibliographicCitation.authorsDongarra, Jack-
local.bibliographicCitation.authorsSloot, Peter M. A.-
local.bibliographicCitation.conferencedate2017, Juni 12-14-
local.bibliographicCitation.conferencenameInternational Conference on Computational Science (ICCS 2017)-
local.bibliographicCitation.conferenceplaceZurich, Switzerland-
dc.identifier.epage1039-
dc.identifier.spage1030-
dc.identifier.volume108-
local.format.pages10-
local.bibliographicCitation.jcatC1-
dc.description.notes[Aa, Tom Vander; Chakroun, Imen] IMEC, Exascience Lab, Kapeldreef 75, B-3001 Leuven, Belgium. [Haber, Tom] Expertise Ctr Digital Media, Wetenschapspk 2, B-3590 Diepenbeek, Belgium.-
local.publisher.placeAmsterdam, The Netherlands-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr108-
local.classdsPublValOverrule/author_version_not_expected-
dc.identifier.doi10.1016/j.procs.2017.05.009-
dc.identifier.isi000404959000104-
local.bibliographicCitation.btitleInternational Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland-
local.uhasselt.internationalno-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.contributorAa, Tom Vander-
item.contributorChakroun, Imen-
item.contributorHABER, Tom-
item.fullcitationAa, Tom Vander; Chakroun, Imen & HABER, Tom (2017) Distributed Bayesian Probabilistic Matrix Factorization. In: Koumoutsakos, Petros; Lees, Michael; Krzhizhanovskaya, Valeria; Dongarra, Jack; Sloot, Peter M. A. (Ed.). International Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, Elsevier Science BV, p. 1030-1039.-
item.validationecoom 2018-
crisitem.journal.issn1877-0509-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Haber.pdfPublished version535.69 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.