Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/271
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAERTS, Marc-
dc.contributor.authorCLAESKENS, Gerda-
dc.contributor.authorHENS, Niel-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2004-08-31T11:07:40Z-
dc.date.available2004-08-31T11:07:40Z-
dc.date.issued2002-
dc.identifier.citationBiometrika, 89(2). p. 375-388-
dc.identifier.issn0006-3444-
dc.identifier.urihttp://hdl.handle.net/1942/271-
dc.description.abstractDealing with missing data via parametric multiple imputation methods usually implies stating several strong assumptions both about the distribution of the data and about underlying regression relationships.If such parametric assumptions do not hold, the multiply imputed data are not appropriate and might produce inconsistent estimators and thus misleading results. In this paper, a fully nonparametric and a semiparametric imputation method are studied, both based on local resampling principles. It is shown that the final estimator, based on these local imputations, is consistent under fewer or no parametric assumptions. Asymptotic expressions for bias, variance and mean squared error are derived, showing the theoretical impact of the different smoothing parameters. Simulations illustrate the usefulness and applicability of the method.-
dc.language.isoen-
dc.publisherOXFORD UNIV PRESS-
dc.rightsCopyright Biometrika Trust 2002-
dc.subjectNon and semiparametric methods-
dc.subjectComputer intensive-
dc.subjectMissing data-
dc.subject.otherbootstrap; Kernel weight; missing value; multiple imputation; nonparametric imputation; nonresponse; semiparametric imputation-
dc.titleLocal multiple imputation-
dc.typeJournal Contribution-
dc.identifier.epage388-
dc.identifier.issue2-
dc.identifier.spage375-
dc.identifier.volume89-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1093/biomet/89.2.375-
dc.identifier.isi000176520500009-
item.fulltextWith Fulltext-
item.contributorAERTS, Marc-
item.contributorCLAESKENS, Gerda-
item.contributorHENS, Niel-
item.contributorMOLENBERGHS, Geert-
item.fullcitationAERTS, Marc; CLAESKENS, Gerda; HENS, Niel & MOLENBERGHS, Geert (2002) Local multiple imputation. In: Biometrika, 89(2). p. 375-388.-
item.accessRightsOpen Access-
item.validationecoom 2003-
crisitem.journal.issn0006-3444-
crisitem.journal.eissn1464-3510-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
a.pdf
  Restricted Access
Published version134.52 kBAdobe PDFView/Open    Request a copy
a.pdfPeer-reviewed author version135.51 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.