Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/27416
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | HUZAK, Renato | - |
dc.date.accessioned | 2018-11-16T09:55:15Z | - |
dc.date.available | 2018-11-16T09:55:15Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | JOURNAL OF DIFFERENTIAL EQUATIONS, 266 (10), p. 6179-6203. | - |
dc.identifier.issn | 0022-0396 | - |
dc.identifier.uri | http://hdl.handle.net/1942/27416 | - |
dc.description.abstract | The slow divergence integral has proved to be an important tool in the study of slow-fast cycles defined on an orientable two-dimensional manifold (e.g. R^2). The goal of our paper is to study 1-canard cycle and 2-canard cycle bifurcations on a non-orientable two-dimensional manifold (e.g. the Möbius band) by using similar techniques. Our focus is on smooth slow-fast models with a Hopf breaking mechanism. The same results can be proved for a jump breaking mechanism and non-generic turning points. The slow-fast bifurcation problems on the Möbius band require the study of the 2-return map attached to such 1- and 2-canard cycles. We give a simple sufficient condition, expressed in terms of the slow divergence integral, for the existence of a period-doubling bifurcation near the 1-canard cycle. We also prove the finite cyclicity property of “singular” 1- and 2-homoclinic loops (“regular” 1-homoclinic loops of finite codimension have been studied by Guimond). | - |
dc.language.iso | en | - |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | - |
dc.subject.other | slow divergence integral; Mobius band; slow-fast systems | - |
dc.title | Slow divergence integral on a Möbius band | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 6203 | - |
dc.identifier.issue | 10 | - |
dc.identifier.spage | 6179 | - |
dc.identifier.volume | 266 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA | - |
dc.relation.references | [1]P. De Maesschalck, F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations 215(2) (2005) 225–267. [2]P. De Maesschalck, F. Dumortier, Canard cycles in the presence of slow dynamics with singularities, Proc. Roy. Soc. Edinburgh Sect. A 138(2) (2008) 265–299. [3]P. De Maesschalck, F. Dumortier, R. Roussarie, Cyclicity of common slow-fast cycles, Indag. Math. (N.S.) 22(3–4) (2011) 165–206. [4]F. Dumortier, R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc. 121(577) (1996) x+100, with an appendix by Cheng Zhi Li. [5]F. Dumortier, Slow divergence integral and balanced canard solutions, Qual. Theory Dyn. Syst. 10(1) (2011) 65–85. [6]J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol.42, Springer-Verlag, New York, 1983. [7]L.-S. Guimond, Homoclinic loop bifurcations on a Möbius band, Nonlinearity 12(1) (1999) 59–78. [8]R. Huzak, P. De Maesschalck, F. Dumortier, Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations, J. Differential Equations 255(11) (2013) 4012–4051. [9]A.G. Khovanskii, Fewnomials, Translations of Mathematical Monographs, vol.88, American Mathematical Society, Providence, RI, 1991, Translated from the Russian by Smilka Zdravkovska. [10]M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations 174(2) (2001) 312–368. [11]L. Mamouhdi, R. Roussarie, Canard cycles of finite codimension with two breaking parameters, Qual. Theory Dyn. Syst. 11(1) (2012) 167–198. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.status | In press | - |
dc.source.type | Article | - |
dc.identifier.doi | 10.1016/j.jde.2018.11.002 | - |
dc.identifier.isi | WOS:000459921400001 | - |
dc.identifier.eissn | - | |
local.provider.type | Web of Science | - |
item.contributor | HUZAK, Renato | - |
item.fullcitation | HUZAK, Renato (2018) Slow divergence integral on a Möbius band. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 266 (10), p. 6179-6203.. | - |
item.accessRights | Open Access | - |
item.fulltext | With Fulltext | - |
item.validation | ecoom 2020 | - |
crisitem.journal.issn | 0022-0396 | - |
crisitem.journal.eissn | 1090-2732 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SDIMobius.pdf | Peer-reviewed author version | 954.73 kB | Adobe PDF | View/Open |
1-s2.0-S002203961830648X-main.pdf Restricted Access | Published version | 738.24 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.