Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27452
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHUZAK, Renato-
dc.date.accessioned2018-11-27T08:25:26Z-
dc.date.available2018-11-27T08:25:26Z-
dc.date.issued2019-
dc.identifier.citationQualitative Theory of Dynamical Systems,-
dc.identifier.issn1575-5460-
dc.identifier.urihttp://hdl.handle.net/1942/27452-
dc.description.abstractIn this paper we prove that the quartic Liénard equation with linear damping {x˙=y,y˙=−(a0+x)y−(b0+b1x+b2x2+b3x3+x4)} can have at most two limit cycles, for the parameters kept in a small neighborhood of the origin (a0,b0,b1,b2,b3)=(0,0,0,0,0) . Near the origin in the parameter space, the Liénard equation is of singular type and we use singular perturbation theory and the family blow up. To study the limit cycles globally in the phase space we need a suitable Poincaré–Lyapunov compactification.-
dc.language.isoen-
dc.rightsSpringer Nature Switzerland AG. Part of Springer Nature.-
dc.subject.otherSingular perturbation problems; Slow–fast systems; Limit cycles; Blow-up; 16th Hilbert’s problem-
dc.titleQuartic Liénard Equations with Linear Damping-
dc.typeJournal Contribution-
dc.identifier.epage614-
dc.identifier.issue2-
dc.identifier.spage603-
dc.identifier.volume18-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1007/s12346-018-0302-3-
dc.identifier.isi000476518900013-
item.contributorHUZAK, Renato-
item.fullcitationHUZAK, Renato (2019) Quartic Liénard Equations with Linear Damping. In: Qualitative Theory of Dynamical Systems,.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2020-
crisitem.journal.issn1575-5460-
crisitem.journal.eissn1662-3592-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
QuarticLienard.pdfPeer-reviewed author version522.96 kBAdobe PDFView/Open
Huzak2018_Article_QuarticLiénardEquationsWithLin.pdf
  Restricted Access
Published version610.77 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.