Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27472
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWolffis, Jarod J.-
dc.contributor.authorVANPOUCKE, Danny E.P.-
dc.contributor.authorSharma, Amit-
dc.contributor.authorLawler, Keith V.-
dc.contributor.authorForster, Paul M.-
dc.date.accessioned2018-12-06T11:16:15Z-
dc.date.available2018-12-06T11:16:15Z-
dc.date.issued2019-
dc.identifier.citationMICROPOROUS AND MESOPOROUS MATERIALS, 277, p. 184-196-
dc.identifier.issn1387-1811-
dc.identifier.urihttp://hdl.handle.net/1942/27472-
dc.description.abstractPartial atomic charge, which determines the magnitude of the Coulombic non-bonding interaction, represents acritical parameter in molecular mechanics simulations. Partial charges may also be used as a measure of physicalproperties of the system, ie. covalency, acidic/catalytic sites, etc. A range of methods, both empirical and abinitio, exist for calculating partial charges in a given solid, and several of them are compared here for siliceous(pure silica) zeolites. The relationships between structure and the predicted partial charge are examined. Thepredicted partial charges from different methods are also compared with related experimental observations,showing that a few of the methods offer some guidance towards identifying the T-sites most likely to undergosubstitution or for proton localization in acidic framework forms. Finally, we show that assigning unique cal-culated charges to crystallographically unique framework atoms makes an appreciable difference in simulatingpredicting N2and O2adsorption with common dispersion-repulsion parameterizations.-
dc.description.sponsorshipFWO, 12S3415N-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights© 2018 Elsevier Inc. All rights reserved-
dc.subject.otherZeoalite; Partial charge; Molecular mechanics; DFT; T-atom substitution; Acid catalysis-
dc.titlePredicting Partial Atomic Charges in Siliceous Zeolites-
dc.typeJournal Contribution-
dc.identifier.epage196-
dc.identifier.spage184-
dc.identifier.volume277-
local.bibliographicCitation.jcatA1-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
dc.relation.references[1] S.M. Csicsery, Shape-selective catalysis in zeolites, Zeolites 4 (1984) 202–213,https://doi.org/10.1016/0144-2449(84)90024-1.[2] M. Mabilia, R.A. Pearlstein, A.J. Hopfinger, Molecular modeling of zeolite struc-ture. 1. Properties of the sodalite cage, J. Am. Chem. Soc. 109 (1987) 7960–7968,https://doi.org/10.1021/ja00260a005.[3] Z.B. Bao, L. Yu, T. Dou, Y.J. Gong, Q. Zhang, Q.L. Ren, X.Y. Lu, S.G. Deng,Adsorption equilibria of CO2, CH4, N-2, O-2, and Ar on high silica zeolites, J.14 (1992) 10024–10035, https://doi.org/10.1021/ja00051a040.[22] S. Buttefey, A. Boutin, C. Mellot-Draznieks, A.H. Fuchs, A simple model for pre-dicting the Na+ distribution in anhydrous NaY and NaX zeolites, J. Phys. Chem. B105 (2001) 9569–9575, https://doi.org/10.1021/jp0105903.[23] R.T. Cygan, J.-J. Liang, A.G. Kalinichev, Molecular models of hydroxide, oxy-hydroxide, and clay phases and the development of a general force field, J. Phys.Chem. B 108 (2004) 1255–1266, https://doi.org/10.1021/jp0363287.[24] Y.G. Bushuev, G. Sastre, Atomistic simulations of structural defects and wateroccluded in SSZ-74 zeolite, J. Phys. Chem. C 113 (2009) 10877–10886, https://doi.org/10.1021/jp9013306.[25] B. Liu, B. Smit, F. Rey, S. Valencia, S. Calero, A new united atom force field foradsorption of alkenes in zeolites, J. Phys. Chem. C 112 (2008) 2492–2498, https://doi.org/10.1021/jp075809d.[26] P. Bai, M. Tsapatsis, J.I. Siepmann, TraPPE-zeo: transferable potentials for phaseequilibria force field for all-silica zeolites, J. Phys. Chem. C 117 (2013)24375–24387, https://doi.org/10.1021/jp4074224.[27] K.V. Lawler, A. Sharma, B. Alagappan, P.M. Forster, Assessing zeolite frameworksfor noble gas separations through a joint experimental and computational ap-proach, Microporous Mesoporous Mater. 222 (2016) 104–112, https://doi.org/10.1016/j.micromeso.2015.10.005.[28] H. van Koningsveld, J. Jansen, H. van Bekkum, The monoclinic frameworkstructure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5, Zeolites 10 (1990) 235–242, https://doi.org/10.1016/0144-2449(94)90134-1.[29] H. van Koningsveld, J.C. Jansen, H. van Bekkum, The location of p-di-chlorobenzene in a single crystal of zeolite H-ZSM-5 at high sorbate loading, ActaCrystallogr. Sect. B Struct. Sci. 52 (1996) 140–144, https://doi.org/10.1107/S0108768195008524.[30] J.B. Parra, C.O. Ania, D. Dubbeldam, T.J.H. Vlugt, J.M. Castillo, P.J. Merkling,S. Calero, Unraveling the argon adsorption processes in MFI-type zeolite, J. Phys.Chem. C 112 (2008) 9976–9979, https://doi.org/10.1021/jp803753h.[31] S. Chempath, L.A. Clark, R.Q. Snurr, Two general methods for grand canonicalensemble simulation of molecules with internal flexibility, J. Chem. Phys. 118(2003) 7635–7643[32] D. Dubbeldam, R.Q. Snurr, Recent developments in the molecular modeling ofdiffusion in nanoporous materials, Mol. Simulat. 33 (2007) 305–325, https://doi.org/10.1080/08927020601156418.[33] Y.G. Bushuev, G. Sastre, Feasibility of pure silica zeolites, J. Phys. Chem. C 114(2010) 19157–19168, https://doi.org/10.1021/jp107296e.[34] D. Dubbeldam, S. Calero, D.E. Ellis, R.Q. Snurr, RASPA: molecular simulationsoftware for adsorption and diffusion in flexible nanoporous materials, Mol.Simulat. 42 (2016) 81–101, https://doi.org/10.1080/08927022.2015.1010082.[35] J. Weitkamp, Zeolites and catalysis, Solid State Ionics 131 (2000) 175–188,https://doi.org/10.1016/s0167-2738(00)00632-9.[36] S.R. Bare, S.D. Kelly, W. Sinkler, J.J. Low, F.S. Modica, S. Valencia, A. Corma,L.T. Nemeth, Uniform catalytic site in Sn-β-Zeolite determined using X-ray ab-sorption fine structure, J. Am. Chem. Soc. 127 (2005) 12924–12932, https://doi.org/10.1021/ja052543k.[37] W.O. Haag, Catalysis by zeolites - science and technology, in: J. Weitkamp,H.G. Karge, H. Pfeifer, W. Holderich (Eds.), Zeolites Relat. Microporous Mater.State Art 1994, Elsevier Science Bv, Amsterdam, 1994, pp. 1375–1394.[38] S. Hamad, S.R.G. Balestra, R. Bueno-Perez, S. Calero, A.R. Ruiz-Salvador, Atomiccharges for modeling metal–organic frameworks: why and how, J. Solid StateChem. 223 (2015) 144–151, https://doi.org/10.1016/j.jssc.2014.08.004.[39] W.J. Mortier, S.K. Ghosh, S. Shankar, Electronegativity-equalization method forthe calculation of atomic charges in molecules, J. Am. Chem. Soc. 108 (1986)4315–4320, https://doi.org/10.1021/ja00275a013.[40] A.K. Rappe, W.A. Goddard, Charge equilibration for molecular dynamics simula-tions, J. Phys. Chem. 95 (1991) 3358–3363, https://doi.org/10.1021/j100161a070.[41] C.E. Wilmer, K.C. Kim, R.Q. Snurr, An extended charge equilibration method, J.Phys. Chem. Lett. 3 (2012) 2506–2511, https://doi.org/10.1021/jz3008485.[42] J.H. Chen, T.J. Martinez, QTPIE: charge transfer with polarization currentequalization. A fluctuating charge model with correct asymptotics, Chem. Phys.Lett. 438 (2007) 315–320, https://doi.org/10.1016/j.cplett.2007.02.065.[43] F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities,Theor. Chim. Acta 44 (1977) 129–138, https://doi.org/10.1007/BF00549096.[44] D.E.P. Vanpoucke, P. Bultinck, I. Van Driessche, Extending Hirshfeld-I to bulk andperiodic materials, J. Comput. Chem. 34 (2013) 405–417, https://doi.org/10.1002/jcc.23088.[45] D.E.P. Vanpoucke, I. Van Driessche, P. Bultinck, Reply to ‘comment on “extendingHirshfeld-I to bulk and periodic materials, J. Comput. Chem. 34 (2013) 422–427,https://doi.org/10.1002/jcc.23193.[46] T.A. Manz, D.S. Sholl, Chemically meaningful atomic charges that reproduce theelectrostatic potential in periodic and nonperiodic materials, J. Chem. Theor.Comput. 6 (2010) 2455–2468, https://doi.org/10.1021/ct100125x.[47] T.A. Manz, D.S. Sholl, Improved atoms-in-molecule charge partitioning functionalfor simultaneously reproducing the electrostatic potential and chemical states inperiodic and nonperiodic materials, J. Chem. Theor. Comput. 8 (2012)2844–2867, https://doi.org/10.1021/ct3002199.[48] N.G. Limas, T.A. Manz, Introducing DDEC6 atomic population analysis: part 2.Computed results for a wide range of periodic and nonperiodic materials, RSCAdv. 6 (2016) 45727–45747, https://doi.org/10.1039/C6RA05507A.[49] E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, Improved grid-based algorithmfor Bader charge allocation, J. Comput. Chem. 28 (2007) 899–908, https://doi.org/10.1002/jcc.20575.[50] W. Tang, E. Sanville, G. Henkelman, A grid-based Bader analysis algorithmwithout lattice bias, J. Physics-Condensed Matter 21 (2009) 7, https://doi.org/10.1088/0953-8984/21/8/084204.[51] M. Yu, D.R. Trinkle, Accurate and efficient algorithm for Bader charge integration,J. Chem. Phys. 134 (2011) 64111 https://doi.org/10.1063/1.3553716.[52] C. Campañá, B. Mussard, T.K. Woo, Electrostatic potential derived atomic chargesfor periodic systems using a modified error functional, J. Chem. Theor. Comput. 5(2009) 2866–2878, https://doi.org/10.1021/ct9003405.[53] C. Baerlocher, A. Hepp, W.M. Meier, DLS-76 : a Program for the Simulation ofCrystal Structures by Geometric Refinement, English, R, Institute ofCrystallography and Petrography - ETH, Zürich, 1978http://www.worldcat.org/title/dls-76-a-program-for-the-simulation-of-crystal-structures-by-geometric-refinement/oclc/428159919&referer=brief_results , Accessed date: 18 September2018.[54] G. Sastre, J.D. Gale, ZeoTsites: a code for topological and crystallographic tetra-hedral sites analysis in zeolites and zeotypes, Microporous Mesoporous Mater. 43(2001) 27–40, https://doi.org/10.1016/S1387-1811(00)00344-9.[55] G. Sastre, A. Corma, Rings and strain in pure silica zeolites, J. Phys. Chem. B 110(2006) 17949–17959, https://doi.org/10.1021/jp060505x.[56] J.D. Gale, GULP: a computer program for the symmetry-adapted simulation ofsolids, J. Chem. Soc. Trans. 93 (1997) 629–637, https://doi.org/10.1039/a606455h.[57] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation madesimple, Phys. Rev. Lett. 77 (1996) 3865–3868, https://doi.org/10.1103/PhysRevLett.77.3865.[58] G. Yang, E.A. Pidko, E.J.M. Hensen, Structure, stability, and Lewis acidity of monoand double Ti, Zr, and Sn framework substitutions in BEA zeolites: a periodicdensity functional theory study, J. Phys. Chem. C 117 (2013) 3976–3986, https://doi.org/10.1021/jp310433r.[59] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the 94elements H-Pu, J. Chem. Phys. 132 (2010) 154104, https://doi.org/10.1063/1.3382344.[60] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994)17953–17979, https://doi.org/10.1103/PhysRevB.50.17953.[61] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758–1775, https://doi.org/10.1103/PhysRevB.59.1758.[62] P. Vinet, J.R. Smith, J. Ferrante, J.H. Rose, Temperature effects on the universalequation of state of solids, Phys. Rev. B 35 (1987) 1945–1953, https://doi.org/10.1103/PhysRevB.35.1945.[63] P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49 (1994) 16223–16233, https://doi.org/10.1103/PhysRevB.49.16223.[64] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlationeffects*, Phys. Rev. 140 (1965) 1133–1138.[65] G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Baderdecomposition of charge density, Comput. Mater. Sci. 36 (2006) 354–360, https://doi.org/10.1016/j.commatsci.2005.04.010.[66] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equationof state calculations by fast computing machines, J. Chem. Phys. 21 (1953)1087–1092 https://doi.org/10.1063/1.1699114.[67] D.-Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem.Fundam. 15 (1976) 59–64, https://doi.org/10.1021/i160057a011.[68] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press;Oxford University Press, New York, 1987.[69] D. Frenkel, B. Smit, Understanding Molecular Simulation: from Algorithms toApplications, second ed., Academic Press, Elsevier, San Diego, 2002http://portal.acm.org/citation.cfm?id=559571.[70] A. Gupta, S. Chempath, M.J. Sanborn, L.A. Clark, R.Q. Snurr, Object-orientedprogramming paradigms for molecular modeling, Mol. Simulat. 29 (2003) 29–46,https://doi.org/10.1080/0892702031000065719.[71] D. Wolf, P. Keblinski, S.R. Phillpot, J. Eggebrecht, Exact method for the simulationof Coulombic systems by spherically truncated, pairwise r−1 summation, J.Chem. Phys. 110 (1999) 8254–8282, https://doi.org/10.1063/1.478738.[72] D. Olds, K.V. Lawler, A.A. Paecklar, J. Liu, K. Page, P.F. Peterson, P.M. Forster,J.R. Neilson, Capturing the details of N 2 adsorption in zeolite X using stroboscopicisotope contrasted neutron total scattering, Chem. Mater. 30 (2018) 296–302,https://doi.org/10.1021/acs.chemmater.7b04594.[73] J.J. Potoff, J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes,carbon dioxide, and nitrogen, AIChE J. 47 (2001) 1676–1682, https://doi.org/10.1002/aic.690470719.[74] L. Zhang, J.I. Siepmann, Direct calculation of Henry's law constants from Gibbsensemble Monte Carlo simulations: nitrogen, oxygen, carbon dioxide and methanein ethanol, Theor. Chem. Acc. 115 (2006) 391–397, https://doi.org/10.1007/s00214-005-0073-1.[75] L. Zhang, J.I. Siepmann, Development of the trappe force field for ammonia,Collect. Czech Chem. Commun. 75 (2010) 577–591, https://doi.org/10.1135/cccc2009540.[76] C.D. Wick, J.I. Siepmann, W.L. Klotz, M.R. Schure, Temperature effects on theretention of n-alkanes and arenes in helium–squalane gas–liquid chromatography,J. Chromatogr. A 954 (2002) 181–190, https://doi.org/10.1016/S0021-9673(02)00171-1.[77] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein,Comparison of simple potential functions for simulating liquid water, J. Chem.Phys. 79 (1983) 926–935, https://doi.org/10.1063/1.445869.[78] K.V. Lawler, P.M. Forster, Evaluating the selectivity of sorbents for noble gas se-parations across a range of temperatures, loadings, and gas compositions,Zeitschrift Fur Anorg. Und Allg. Chemie. 642 (2016), https://doi.org/10.1002/zaac.201600375.[79] J.A. Hriljac, M.M. Eddy, A.K. Cheetham, J.A. Donohue, G.J. Ray, Powder neutrondiffraction and 29Si MAS NMR studies of siliceous zeolite-Y, J. Solid State Chem.106 (1993) 66–72, https://doi.org/10.1006/jssc.1993.1265.[80] M. Colligan, P.M. Forster, A.K. Cheetham, Y. Lee, T. Vogt, J.A. Hriljac,Synchrotron X-ray powder diffraction and computational investigation of purelysiliceous zeolite Y under pressure, J. Am. Chem. Soc. 126 (2004) 12015–12022,https://doi.org/10.1021/ja048685g.[81] J.A. Hriljac, High-pressure synchrotron X-ray powder diffraction studies of zeo-lites, Crystallogr. Rev. 12 (2006) 181–193, https://doi.org/10.1080/08893110600772032.[82] F.C. Jentoft, Advances in Catalysis vol. 57, Elsevier Academic Press Inc, San Diego,2014.[83] J.D. Gale, A.L. Rohl, The general utility lattice program (GULP), Mol. Simulat. 29(2003) 291–341, https://doi.org/10.1080/0892702031000104887.[84] R.S. Mulliken, Electronic population analysis on LCAO–MO molecular wavefunctions. I, J. Chem. Phys. 23 (1955) 1833–1840, https://doi.org/10.1063/1.1740588.[85] E. Aprà, R. Dovesi, C. Freyria-Fava, C. Pisani, C. Roetti, V.R. Saunders, Ab initioHartree-Fock modelling of zeolites: application to silico-chabazite, Model. Simulat.Mater. Sci. Eng. 1 (1993) 297–306, https://doi.org/10.1088/0965-0393/1/3/004.[86] E.H. Teunissen, A.P.J. Jansen, R.A. van Santen, R. Orlando, R. Dovesi, Adsorptionenergies of NH 3 and NH + 4 in zeolites corrected for the long‐range electrostaticpotential of the crystal, J. Chem. Phys. 101 (1994) 5865–5874, https://doi.org/10.1063/1.467303.[87] C.M. Zicovich-Wilson, R. Dovesi, Titanium-containing zeolites. A periodic ab initioHartree−Fock characterization, J. Phys. Chem. B 102 (1998) 1411–1417, https://doi.org/10.1021/jp972343y.[88] C. Møller, M.S. Plesset, Note on an approximation treatment for many-electronsystems, Phys. Rev. 46 (1934) 618–622,[89] K. de Boer, A.P.J. Jansen, R.A. van Santen, Ab initio approach to the developmentof interatomic potentials for the shell model of silica polymorphs, Chem. Phys.Lett. 223 (1994) 46–53, https://doi.org/10.1016/0009-2614(94)00406-4.[90] A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J.Chem. Phys. 98 (1993) 5648–5652, https://doi.org/10.1063/1.464913.[91] A. Pedone, G. Malavasi, M.C. Menziani, U. Segre, F. Musso, M. Corno, B. Civalleri,P. Ugliengo, FFSiOH: a new force field for silica polymorphs and their hydro-xylated surfaces based on periodic B3LYP calculations, Chem. Mater. 20 (2008)2522–2531, https://doi.org/10.1021/cm703437y.[92] H. Fang, P. Kamakoti, J. Zang, S. Cundy, C. Paur, P.I. Ravikovitch, D.S. Sholl,Prediction of CO 2 adsorption properties in zeolites using force fields derived fromperiodic dispersion-corrected DFT calculations, J. Phys. Chem. C 116 (2012)10692–10701, https://doi.org/10.1021/jp302433b.[93] H. Fang, R. Awati, S.E. Boulfelfel, P.I. Ravikovitch, D.S. Sholl, First-principles-derived force fields for CH 4 adsorption and diffusion in siliceous zeolites, J. Phys.Chem. C 122 (2018) 12880–12891, https://doi.org/10.1021/acs.jpcc.8b03267.[94] D. Barthomeuf, Zeolite acidity dependence on structure and chemical environ-ment. Correlations with catalysis, Mater. Chem. Phys. 17 (1987) 49–71, https://doi.org/10.1016/0254-0584(87)90048-4.[95] G. Sastre, V. Fornes, A. Corma, Preferential siting of bridging hydroxyls and theirdifferent acid strengths in the two-channel system of MCM-22 zeolite, J. Phys.Chem. B 104 (2000) 4349–4354, https://doi.org/10.1021/jp993636p.[96] A. Zheng, L. Chen, J. Yang, M. Zhang, Y. Su, Y. Yue, C. Ye, F. Deng, Combined DFTtheoretical calculation and solid-state NMR studies of Al substitution and acid sitesin zeolite MCM-22, J. Phys. Chem. B 109 (2005) 24273–24279, https://doi.org/10.1021/jp0527249.[97] J.D. Gale, A periodic density functional study of the location of titanium withinTS-1, Solid State Sci. 8 (2006) 234–240, https://doi.org/10.1016/j.solidstatesciences.2006.02.011.[98] S. Shetty, B.S. Kulkarni, D.G. Kanhere, A. Goursot, S. Pal, A comparative study ofstructural, acidic and hydrophilic properties of Sn−BEA with Ti−BEA usingperiodic density functional theory, J. Phys. Chem. B 112 (2008) 2573–2579,https://doi.org/10.1021/jp709846s.[99] A. Corma, M.T. Navarro, F. Rey, J. Rius, S. Valencia, Pure polymorph C of zeolitebeta synthesized by using framework isomorphous substitution as a structure-di-recting mechanism, Angew. Chemie-International Ed. 40 (2001) 2277, https://doi.org/10.1002/1521-3773(20010618)40:12<2277::aid-anie2277>3.0.co;2-o.[100] G. Sastre, J.A. Vidal-Moya, T. Blasco, J. Rius, J.L. Jorda, M.T. Navarro, F. Rey,A. Corma, Preferential location of Ge atoms in polymorph C of beta zeolite (ITQ-17) and their structure-directing effect: a computational, XRD, and NMR spec-troscopic study, Angew. Chemie-International Ed. 41 (2002) 4722–4726, https://doi.org/10.1002/anie.200290028.[101] B.D. Montejo-Valencia, M.C. Curet-Arana, DFT study of the Lewis acidities andrelative hydrothermal stabilities of BEC and BEA zeolites substituted with Ti, Sn,and Ge, J. Phys. Chem. C 119 (2015) 4148–4157, https://doi.org/10.1021/jp512269s.[102] L. Nemeth, S.R. Bare, Science and technology of framework metal-containingzeotype catalysts, in: C.J. Friederike (Ed.), Adv. Catal, Academic Press, 2014, pp.1–97, , https://doi.org/10.1016/B978-0-12-800127-1.00001-1.[103] H. van Koningsveld, H. van Bekkum, J.C. Jansen, On the location and disorder ofthe tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved frameworkaccuracy, Acta Crystallogr. Sect. B Struct. Sci. 43 (1987) 127–132, https://doi.org/10.1107/S0108768187098173.[104] H. van Koningsveld, F. Tuinstra, H. van Bekkum, J.C. Jansen, The location of p-xylene in a single crystal of zeolite H-ZSM-5 with a new, sorbate-induced, or-thorhombic framework symmetry, Acta Crystallogr. B 45 (1989) 423–431, https://doi.org/10.1107/S0108768189004519.[105] H. van Koningsveld, High-temperature (350 K) orthorhombic framework structureof zeolite H-ZSM-5, Acta Crystallogr. Sect. B Struct. Sci. 46 (1990) 731–735,https://doi.org/10.1107/S0108768190007522.[106] H.V. Brand, L.A. Curtiss, L.E. Iton, Ab initio molecular orbital cluster studies of thezeolite ZSM-5. 1. Proton affinities, J. Phys. Chem. 97 (1993) 12773–12782,https://doi.org/10.1021/j100151a024.[107] S.A. Zygmunt, L.A. Curtiss, L.E. Iton, M.K. Erhardt, Computational studies of wateradsorption in the zeolite H-ZSM-5, J. Phys. Chem. 100 (1996) 6663–6671, https://doi.org/10.1021/jp952913z.[108] R.Z. Khaliullin, A.T. Bell, V.B. Kazansky, An experimental and density functionaltheory study of the interactions of CH4 with H−ZSM-5, J. Phys. Chem. 105 (2001)10454–10461, https://doi.org/10.1021/jp012377c.[109] A. Simperler, R.G. Bell, M.D. Foster, A.E. Gray, D.W. Lewis, M.W. Anderson,Probing the acid strength of brønsted acidic zeolites with acetonitrile: an atomisticand quantum chemical study, J. Phys. Chem. B 108 (2004) 7152–7161, https://doi.org/10.1021/jp035673t.[110] K. Sun, F. Fan, H. Xia, Z. Feng, W.-X. Li, C. Li, Framework Fe ions in Fe-ZSM-5zeolite studied by UV resonance Raman spectroscopy and density functionaltheory calculations, J. Phys. Chem. C 112 (2008) 16036–16041, https://doi.org/10.1021/jp802955s.[111] G. Pirc, J. Stare, Titanium site preference problem in the TS-1 zeolite catalyst: aperiodic Hartree-Fock study, Acta Chim. Slov. 55 (2008) 951–959.[112] S.P. Yuan, H.Z. Si, A.P. Fu, T.S. Chu, F.H. Tian, Y.B. Duan, J.G. Wang, Location ofSi vacancies and Ti(OSi)(4) and Ti(OSi)(3)OH sites in the MFI framework: a largecluster and full ab initio study, J. Phys. Chem. 115 (2011) 940–947, https://doi.org/10.1021/jp110977m.[113] P.J. O'Malley, J. Dwyer, Ab-initio molecular orbital calculations on the siting ofaluminium in the Theta-1 framework: some general guidelines governing the sitepreferences of aluminium in zeolites, Zeolites 8 (1988) 317–321,[114] S. Sklenak, J. Dědeček, C. Li, F. Gao, B. Jansang, B. Boekfa, B. Wichterlová,J. Sauer, Aluminum siting in the ZSM-22 and theta-1 zeolites revisited: a QM/MMstudy, Collect. Czech Chem. Commun. 73 (2008) 909–920, https://doi.org/10.1135/cccc20080909.[115] M. Boronat, C.M. Zicovich-Wilson, P. Viruela, A. Corma, Cluster and periodiccalculations of the ethene protonation reaction catalyzed by theta-1 zeolite: in-fluence of method, model size, and structural constraints, Chem. Eur J. 7 (2001)1295–1303, https://doi.org/10.1002/1521-3765(20010316)7:6<1295::AID-CHEM1295>3.0.CO;2-S.[116] K. De Wispelaere, S. Bailleul, V. Van Speybroeck, Towards molecular control ofelementary reactions in zeolite catalysis by advanced molecular simulations mi-micking operating conditions, Catal. Sci. Technol. 6 (2016) 2686–2705, https://doi.org/10.1039/c5cy02073e.[117] E.A. Havenga, Y. Huang, R.A. Secco, An investigation of the effect of high pressureon the structure of siliceous zeolite Y, Mater. Res. Bull. 38 (2003) 381–387,https://doi.org/10.1016/S0025-5408(02)01061-9.[118] D.E.P. Vanpoucke, K. Lejaeghere, V. Van Speybroeck, M. Waroquier, A. Ghysels,Mechanical properties from periodic plane wave quantum mechanical codes: thechallenge of the flexible nanoporous MIL-47(V) framework, J. Phys. Chem. C 119(2015), https://doi.org/10.1021/acs.jpcc.5b06809.[119] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study,Phys. Rev. B 57 (1998) 1505–1509, https://doi.org/10.1103/PhysRevB.57.1505.[120] B. Bueken, F. Vermoortele, D.E.P. Vanpoucke, H. Reinsch, C.-C. Tsou,P. Valvekens, T. De Baerdemaeker, R. Ameloot, C.E.A. Kirschhock, V. VanSpeybroeck, J.M. Mayer, D. De Vos, A flexible photoactive titanium metal-organicframework based on a [Ti IV 3 (μ 3 -O)(O) 2 (COO) 6 ] cluster, Angew. Chem. IntEd. 54 (2015) 13912–13917, https://doi.org/10.1002/anie.201505512.[121] D.A. Dixon, J.L. Gole, Description of the ground state electronic structures ofCu2O, Cu2S, Ag2O and Ag2S, Chem. Phys. Lett. 189 (1992) 390–394, https://doi.org/10.1016/0009-2614(92)85220-5.[122] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valenceand quadruple zeta valence quality for H to Rn: design and assessment of accuracy,Phys. Chem. Chem. Phys. 7 (2005) 3297, https://doi.org/10.1039/b508541a.[123] K.V. Lawler, Z. Hulvey, P.M. Forster, On the importance of a precise crystalstructure for simulating gas adsorption in nanoporous materials, Phys. Chem.Chem. Phys. 17 (2015) 18904–18907, https://doi.org/10.1039/C5CP01544H.[124] J. Yang, Y. Ren, A.M. Tian, H.A. Sun, COMPASS force field for 14 inorganic mo-lecules, He, Ne, Ar, Kr, Xe, H-2, O-2, N-2, NO, CO, CO2, NO2, CS2, and SO2, inliquid phases, J. Phys. Chem. B 104 (2000) 4951–4957, https://doi.org/10.1021/jp992913p.[125] M. Fleys, R.W. Thompson, Monte Carlo simulations of water adsorption isothermsin silicalite and dealuminated zeolite Y, J. Chem. Theor. Comput. 1 (2005)453–458, https://doi.org/10.1021/ct049896e.[126] K. Tsutsumi, H.Q. Koh, S. Hagiwara, H. Takahashi, Direct measurement of inter-action energy between solids and gases. I. Heat of adsorption of ammonia onzeolite, Bull. Chem. Soc. Jpn. 48 (1975) 3576–3580, https://doi.org/10.1246/bcsj.48.3576.[127] G. Maurin, R. Bell, B. Kuchta, T. Poyet, P. Llewellyn, Adsorption of non polar andquadrupolar gases in siliceous faujasite: molecular simulations and experiments,Adsorption 11 (2005) 331–336, https://doi.org/10.1007/s10450-005-5946-z.[128] N.J. Henson, A.K. Cheetham, M. Stockenhuber, J.A. Lercher, Modelling aromaticsin siliceous zeolites: a new forcefield from thermochemical studies, J. Chem. Soc.,Faraday Trans. 94 (1998) 3759–3768, https://doi.org/10.1039/a806175k.J.J. Wolffis et al.Microporous and Mesoporous Materials 277 (2019) 184–196196-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.source.typeArticle-
dc.identifier.doi10.1016/j.micromeso.2018.10.028-
dc.identifier.isiWOS:000457662500024-
local.provider.typeWeb of Science-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.validationecoom 2020-
item.contributorWolffis, Jarod J.-
item.contributorVANPOUCKE, Danny E.P.-
item.contributorSharma, Amit-
item.contributorLawler, Keith V.-
item.contributorForster, Paul M.-
item.fullcitationWolffis, Jarod J.; VANPOUCKE, Danny E.P.; Sharma, Amit; Lawler, Keith V. & Forster, Paul M. (2019) Predicting Partial Atomic Charges in Siliceous Zeolites. In: MICROPOROUS AND MESOPOROUS MATERIALS, 277, p. 184-196.-
crisitem.journal.issn1387-1811-
crisitem.journal.eissn1873-3093-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Manuscript (1).pdfPeer-reviewed author version1.14 MBAdobe PDFView/Open
1-s2.0-S1387181118305614-main.pdf
  Restricted Access
Published version1.51 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

4
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

8
checked on Sep 28, 2024

Page view(s)

98
checked on Sep 7, 2022

Download(s)

196
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.