Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28567
Title: Construction of non-commutative surfaces with exceptional collections of length 4
Authors: BELMANS, Pieter 
PRESOTTO, Dennis 
Issue Date: 2018
Publisher: WILEY
Source: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 98(1), p. 85-103
Abstract: Recently de Thanhoffer de Volcsey and Van den Bergh classified the Euler forms on a free abelian group of rank 4 having the properties of the Euler form of a smooth projective surface. There are two types of solutions: one corresponding to P1xP1 (and non-commutative quadrics), and an infinite family indexed by the natural numbers. For m=0,1 there are commutative and non-commutative surfaces having this Euler form, whilst for m2 there are no commutative surfaces. In this paper, we construct sheaves of maximal orders on surfaces having these Euler forms, giving a geometric construction for their numerical blowups.
Notes: [Belmans, Pieter] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany. [Presotto, Dennis] Univ Hasselt, Agoralaan, B-3590 Diepenbeek, Belgium.
Keywords: Mathematics
Document URI: http://hdl.handle.net/1942/28567
ISSN: 0024-6107
e-ISSN: 1469-7750
DOI: 10.1112/jlms.12126
ISI #: 000440843600005
Rights: 2018 London Mathematical Society
Category: A1
Type: Journal Contribution
Validations: ecoom 2019
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Belmans_et_al-2018-Journal_of_the_London_Mathematical_Society.pdf
  Restricted Access
Published version392.46 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.