Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28744
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBRUYNDONCKX, Robin-
dc.contributor.authorHENS, Niel-
dc.contributor.authorAERTS, Marc-
dc.date.accessioned2019-07-17T08:00:19Z-
dc.date.available2019-07-17T08:00:19Z-
dc.date.issued2018-
dc.identifier.citationBIOMETRICAL JOURNAL, 60(1), p. 49-65-
dc.identifier.issn0323-3847-
dc.identifier.urihttp://hdl.handle.net/1942/28744-
dc.description.abstractData in medical sciences often have a hierarchical structure with lower level units (e.g. children) nested in higher level units (e.g. departments). Several specific but frequently studied settings, mainly in longitudinal and family research, involve a large number of units that tend to be quite small, with units containing only one element referred to as singletons. Regardless of sparseness, hierarchical data should be analyzed with appropriate methodology such as, for example linear-mixed models. Using a simulation study, based on the structure of a data example on Ceftriaxone consumption in hospitalized children, we assess the impact of an increasing proportion of singletons (0-95%), in data with a low, medium, or high intracluster correlation, on the stability of linear-mixed models parameter estimates, confidence interval coverage and F test performance. Some techniques that are frequently used in the presence of singletons include ignoring clustering, dropping the singletons from the analysis and grouping the singletons into an artificial unit. We show that both the fixed and random effects estimates and their standard errors are stable in the presence of an increasing proportion of singletons. We demonstrate that ignoring clustering and dropping singletons should be avoided as they come with biased standard error estimates. Grouping the singletons into an artificial unit might be considered, although the linear-mixed model performs better even when the proportion of singletons is high. We conclude that the linear-mixed model is stable in the presence of singletons when both lower and higher level sample sizes are fixed. In this setting, the use of remedial measures, such as ignoring clustering and grouping or removing singletons, should be dissuaded.-
dc.description.sponsorshipMethusalem financement program, Flemish government, University of Antwerp scientific chair in Evidence-Based Vaccinology-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.subject.otherF test-
dc.subject.otherhierarchical data-
dc.subject.otherintracluster correlation-
dc.subject.otherperformance characteristics-
dc.subject.othersparseness-
dc.titleSimulation-based evaluation of the linear-mixed model in the presence of an increasing proportion of singletons-
dc.typeJournal Contribution-
dc.identifier.epage65-
dc.identifier.issue1-
dc.identifier.spage49-
dc.identifier.volume60-
local.format.pages17-
local.bibliographicCitation.jcatA1-
dc.description.notes[Bruyndonckx, Robin; Hens, Niel; Aerts, Marc] Hassell Univ, Interuniv Inst Biostat & Stat Bioinformat I BIOST, Diepenbeek, Belgium. [Bruyndonckx, Robin] Univ Antwerp, Vaccine & Infect Dis Inst VAXIN FECTIO, Lab Med Microbiol, Antwerp, Belgium. [Hens, Niel] Univ Antwerp, Vaccine & Infect Dis Inst VAXINFECTIO, CHER MID, Antwerp, Belgium.-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/bimj.201700025-
dc.identifier.isi000429306500004-
local.uhasselt.internationalno-
item.validationecoom 2019-
item.contributorBRUYNDONCKX, Robin-
item.contributorHENS, Niel-
item.contributorAERTS, Marc-
item.fullcitationBRUYNDONCKX, Robin; HENS, Niel & AERTS, Marc (2018) Simulation-based evaluation of the linear-mixed model in the presence of an increasing proportion of singletons. In: BIOMETRICAL JOURNAL, 60(1), p. 49-65.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0323-3847-
crisitem.journal.eissn1521-4036-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Bruyndonckx_et_al-2018-Biometrical_Journal.pdf
  Restricted Access
Published version537 kBAdobe PDFView/Open    Request a copy
Draft R.Bruyndonckx.pdfNon Peer-reviewed author version195.99 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.