Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29846
Full metadata record
DC FieldValueLanguage
dc.contributor.authorANH-KHOA, Vo-
dc.contributor.authorMuntean, A.-
dc.date.accessioned2019-10-24T11:11:49Z-
dc.date.available2019-10-24T11:11:49Z-
dc.date.issued2019-
dc.identifier.citationCOMMUNICATIONS IN MATHEMATICAL SCIENCES, 17(3), p. 705-738-
dc.identifier.issn1539-6746-
dc.identifier.urihttp://hdl.handle.net/1942/29846-
dc.description.abstractWe consider a non-stationary Stokes-Nernst-Planck-Poisson system posed in perforated domains. Our aim is to justify rigorously the homogenization limit for the upscaled system derived by means of two-scale convergence in [N. Ray, A. Muntean, and P. Knabner, J. Math. Anal. Appl., 390(1):374-393, 2012]. In other words, we wish to obtain the so-called corrector homogenization estimates that specify the error obtained when upscaling the microscopic equations. Essentially, we control in terms of suitable norms differences between the micro-and macro-concentrations and between the corresponding micro- and macro-concentration gradients. The major challenges that we face are the coupled flux structure of the system, the nonlinear drift terms and the presence of the microstructures. Employing various energy-like estimates, we discuss several scalings choices and boundary conditions.-
dc.description.sponsorshipThe work of the first author was partly supported by a postdoctoral fellowship of the Research Foundation-Flanders (FWO).-
dc.language.isoen-
dc.publisherINT PRESS BOSTON, INC-
dc.rightsby International Press of Boston, Inc. All rights reserved.-
dc.subject.otherStokes–Nernst–Planck–Poisson system; variable scalings; two-scale convergence; perforated domains; homogenization asymptotics; corrector estimates-
dc.subject.otherStokes-Nernst-Planck-Poisson system; Variable scalings; Two-scale convergence; Perforated domains; Homogenization asymptotics; Corrector estimates-
dc.titleCorrector homogenization estimates for a non-stationary Stokes-Nernst-Planck-Poisson system in perforated domains-
dc.typeJournal Contribution-
dc.identifier.epage738-
dc.identifier.issue3-
dc.identifier.spage705-
dc.identifier.volume17-
local.format.pages34-
local.bibliographicCitation.jcatA1-
dc.description.notes[Vo Anh Khoa] Gran Sasso Sci Inst, Math & Comp Sci Div, Laquila, Italy. [Vo Anh Khoa] Hasselt Univ, Fac Sci, Campus Diepenbeek,Agoralaan Bldg D, BE-3590 Diepenbeek, Belgium. [Muntean, Adrian] Karlstad Univ, Dept Math & Comp Sci, Karlstad, Sweden.-
local.publisher.placeSOMERVILLE-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.4310/CMS.2019.v17.n3.a6-
dc.identifier.isi000485624800006-
item.fulltextWith Fulltext-
item.fullcitationANH-KHOA, Vo & Muntean, A. (2019) Corrector homogenization estimates for a non-stationary Stokes-Nernst-Planck-Poisson system in perforated domains. In: COMMUNICATIONS IN MATHEMATICAL SCIENCES, 17(3), p. 705-738.-
item.contributorANH-KHOA, Vo-
item.contributorMuntean, A.-
item.validationecoom 2020-
item.accessRightsOpen Access-
crisitem.journal.issn1539-6746-
crisitem.journal.eissn1539-6746-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
[Khoa, Muntean] Corrector homogenization estimates for a non-stationary Stokes-Nernst-Plack-Poisson system in perforated domains.pdf
  Restricted Access
Published version502.18 kBAdobe PDFView/Open    Request a copy
CMStemplate2017.pdfPeer-reviewed author version569.53 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.