Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/29949
Title: | Phase transitions in persistent and run-and-tumble walks | Authors: | PROESMANS, Karel Toral, Raul VAN DEN BROECK, Christian |
Issue Date: | 2020 | Publisher: | ELSEVIER | Source: | Physica A: Statistical Mechanics and its Applications, 552 (Art N° 121934) | Abstract: | We calculate the large deviation function of the end-to-end distance and the corre-spondingextension-versus-forcerelationfor(isotropic)randomwalks,onandoff-lattice,withandwithoutpersistence,andinanyspatialdimension.Foroff-latticerandomwalkswith persistence, the large deviation function undergoes a first order phase transitionin dimensiond>5. In the corresponding force-versus-extension relation, the extensionbecomes independent of the force beyond a critical value. The transition is anticipatedin dimensionsd=4 andd=5, where full extension is reached at a finite value of theapplied stretching force. Full analytic details are revealed in the run-and-tumble limit.Finally,on-latticerandomwalkswithpersistencedisplayasofteningphaseindimensiond=3 and above, preceding the usual stiffening appearing beyond a critical value of theforce. | Keywords: | Persistent random walk;Phase transitions;Large deviation theory | Document URI: | http://hdl.handle.net/1942/29949 | ISSN: | 0378-4371 | e-ISSN: | 1873-2119 | DOI: | 10.1016/j.physa.2019.121934 | ISI #: | WOS:000537072500004 | Rights: | 2019 ElsevierB.V.Allrightsreserved | Category: | A1 | Type: | Journal Contribution | Validations: | ecoom 2021 |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1808.09715.pdf | Peer-reviewed author version | 795.71 kB | Adobe PDF | View/Open |
Proesmans_Karel_2020.pdf Restricted Access | Published version | 491.14 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.