Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29949
Title: Phase transitions in persistent and run-and-tumble walks
Authors: PROESMANS, Karel 
Toral, Raul
VAN DEN BROECK, Christian 
Issue Date: 2020
Publisher: ELSEVIER
Source: Physica A: Statistical Mechanics and its Applications, 552 (Art N° 121934)
Abstract: We calculate the large deviation function of the end-to-end distance and the corre-spondingextension-versus-forcerelationfor(isotropic)randomwalks,onandoff-lattice,withandwithoutpersistence,andinanyspatialdimension.Foroff-latticerandomwalkswith persistence, the large deviation function undergoes a first order phase transitionin dimensiond>5. In the corresponding force-versus-extension relation, the extensionbecomes independent of the force beyond a critical value. The transition is anticipatedin dimensionsd=4 andd=5, where full extension is reached at a finite value of theapplied stretching force. Full analytic details are revealed in the run-and-tumble limit.Finally,on-latticerandomwalkswithpersistencedisplayasofteningphaseindimensiond=3 and above, preceding the usual stiffening appearing beyond a critical value of theforce.
Keywords: Persistent random walk;Phase transitions;Large deviation theory
Document URI: http://hdl.handle.net/1942/29949
ISSN: 0378-4371
e-ISSN: 1873-2119
DOI: 10.1016/j.physa.2019.121934
ISI #: WOS:000537072500004
Rights: 2019 ElsevierB.V.Allrightsreserved
Category: A1
Type: Journal Contribution
Validations: ecoom 2021
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
1808.09715.pdfPeer-reviewed author version795.71 kBAdobe PDFView/Open
Proesmans_Karel_2020.pdf
  Restricted Access
Published version491.14 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.