Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/30222
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ANH-KHOA, Vo | - |
dc.contributor.author | Le Thi Phuong Ngoc | - |
dc.contributor.author | Nguyen Thanh Long | - |
dc.date.accessioned | 2019-12-20T14:32:22Z | - |
dc.date.available | 2019-12-20T14:32:22Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | EVOLUTION EQUATIONS AND CONTROL THEORY, 8(2), p. 359-395 | - |
dc.identifier.issn | 2163-2480 | - |
dc.identifier.uri | http://hdl.handle.net/1942/30222 | - |
dc.description.abstract | In this paper we consider a porous-elastic system consisting of nonlinear boundary/interior damping and nonlinear boundary/interior sources. Our interest lies in the theoretical understanding of the existence, finite time blow-up of solutions and their exponential decay using non-trivial adaptations of well-known techniques. First, we apply the conventional Faedo-Galerkin method with standard arguments of density on the regularity of initial conditions to establish two local existence theorems of weak solutions. Moreover, we detail the uniqueness result in some specific cases. In the second theme, we prove that any weak solution possessing negative initial energy has the latent blow-up in finite time. Finally, we obtain the so-called exponential decay estimates for the global solution under the construction of a suitable Lyapunov functional. In order to corroborate our theoretical decay, a numerical example is provided. | - |
dc.description.sponsorship | This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under Grant no. B2017-18-04. The work of the first author was partly supported by a postdoctoral fellowship of the Research Foundation-Flanders (FWO). | - |
dc.language.iso | en | - |
dc.publisher | AMER INST MATHEMATICAL SCIENCES-AIMS | - |
dc.subject.other | System of nonlinear equations | - |
dc.subject.other | Faedo-Galerkin method | - |
dc.subject.other | local existence | - |
dc.subject.other | global existence | - |
dc.subject.other | blow up | - |
dc.subject.other | exponential decay. | - |
dc.title | Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 395 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 359 | - |
dc.identifier.volume | 8 | - |
local.format.pages | 37 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Vo Anh Khoa] Univ Goettingen, Inst Numer & Appl Math, Lotzestr 16-18, D-37083 Gottingen, Germany. [Vo Anh Khoa; Nguyen Thanh Long] VNUHCM Univ Sci, Dept Math & Comp Sci, 227 Nguyen Cu Str,Dist 5, Ho Chi Minh City, Vietnam. [Vo Anh Khoa] Hasselt Univ, Fac Sci, Campus Diepenbeek,Agoralaan Bldg D, BE-3590 Diepenbeek, Belgium. [Le Thi Phuong Ngoc] Univ Khanh Hoa, 01 Nguyen Chanh Str, Nha Trang City, Vietnam. | - |
local.publisher.place | SPRINGFIELD | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.3934/eect.2019019 | - |
dc.identifier.isi | 000462023500006 | - |
local.provider.type | - | |
item.accessRights | Restricted Access | - |
item.contributor | ANH-KHOA, Vo | - |
item.contributor | Le Thi Phuong Ngoc | - |
item.contributor | Nguyen Thanh Long | - |
item.validation | ecoom 2020 | - |
item.fullcitation | ANH-KHOA, Vo; Le Thi Phuong Ngoc & Nguyen Thanh Long (2019) Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. In: EVOLUTION EQUATIONS AND CONTROL THEORY, 8(2), p. 359-395. | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 2163-2480 | - |
crisitem.journal.eissn | 2163-2480 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1505.06373.pdf | Non Peer-reviewed author version | 713.82 kB | Adobe PDF | View/Open |
a (2).pdf Restricted Access | Published version | 797.91 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.