Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/30365
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVRANCKX, Maren-
dc.contributor.authorNEYENS, Thomas-
dc.contributor.authorFAES, Christel-
dc.date.accessioned2019-12-09T11:59:08Z-
dc.date.accessioned2020-01-22T10:42:42Z-
dc.date.available2019-12-09T11:59:08Z-
dc.date.available2020-01-22T10:42:42Z-
dc.date.issued2019-
dc.date.submitted2019-12-09T08:44:40Z-
dc.date.submitted2019-12-09T08:44:40Z-
dc.identifier.citationSpatial and spatio-temporal epidemiology, 31 (Art N° 100302)-
dc.identifier.issn1877-5845-
dc.identifier.urihttp://hdl.handle.net/1942/30365-
dc.description.abstractDisease mapping is a scientific field that aims to understand and predict disease risk based on counts of observed cases within small regions of a study area of interest. Hierarchical model-based approaches that borrow information from neighbouring areas via conditional autoregressive (CAR) random effects on the local disease rates have gained a lot of popularity, thanks to the readily implemented Markov chain Monte Carlo methods. Nowadays, many software implementations to model risk distributions exist. Many of these applications differ, to varying degrees, in the underlying methodology. This paper provides an in-depth comparison between analysis results, coming from R-packages CARBayes, R2OpenBUGS, NIMBLE, R2BayesX, R-INLA, and RStan. We investigate CAR models typically used in disease mapping for spatially discrete count data. Data about diabetics in children and young adults in Belgium are used in a case study, while simulation studies are undertaken to assess software performance in different settings. (C) 2019 Elsevier Ltd. All rights reserved.-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.rights2019 Elsevier Ltd. All rights reserved.-
dc.subject.otherDisease mapping-
dc.subject.otherConditional autoregressive models-
dc.subject.otherSoftware packages-
dc.subject.otherRelative risks-
dc.subject.otherDiabetics-
dc.titleComparison of different software implementations for spatial disease mapping-
dc.typeJournal Contribution-
dc.identifier.volume31-
local.bibliographicCitation.jcatA1-
local.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr100302-
dc.source.typeArticle-
dc.identifier.doi10.1016/j.sste.2019.100302-
dc.identifier.isiWOS:000496470600004-
local.provider.typeWeb of Science-
local.uhasselt.uhpubyes-
item.validationvabb 2022-
item.contributorVRANCKX, Maren-
item.contributorNEYENS, Thomas-
item.contributorFAES, Christel-
item.fullcitationVRANCKX, Maren; NEYENS, Thomas & FAES, Christel (2019) Comparison of different software implementations for spatial disease mapping. In: Spatial and spatio-temporal epidemiology, 31 (Art N° 100302).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1877-5845-
crisitem.journal.eissn1877-5853-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S1877584518301035-main.pdf
  Restricted Access
Published version10.78 MBUnknownView/Open    Request a copy
Manuscript.pdfPeer-reviewed author version9.95 MBUnknownView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.