Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31370
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGANYANI, Tapiwa-
dc.contributor.authorKREMER, Cécile-
dc.contributor.authorChen, Dongxuan-
dc.contributor.authorTORNERI, Andrea-
dc.contributor.authorFAES, Christel-
dc.contributor.authorWallinga, Jacco-
dc.contributor.authorHENS, Niel-
dc.date.accessioned2020-07-01T13:26:27Z-
dc.date.available2020-07-01T13:26:27Z-
dc.date.issued2020-
dc.date.submitted2020-06-23T12:00:44Z-
dc.identifier.citationEUROSURVEILLANCE, 25 (17) , p. 12 -19-
dc.identifier.urihttp://hdl.handle.net/1942/31370-
dc.description.abstractBackground: Estimating key infectious disease parameters from the coronavirus disease (COVID-19) outbreak is essential for modelling studies and guiding intervention strategies. Aim: We estimate the generation interval, serial interval, proportion of presymptomatic transmission and effective reproduction number of COVID-19. We illustrate that reproduction numbers calculated based on serial interval estimates can be biased. Methods: We used outbreak data from clusters in Singapore and Tianjin, China to estimate the generation interval from symptom onset data while acknowledging uncertainty about the incubation period distribution and the underlying transmission network. From those estimates, we obtained the serial interval, proportions of pre-symptomatic transmission and reproduction numbers. Results: The mean generation interval was 5.20 days (95% credible interval (Crl): 3.78-6.78) for Singapore and 3.95 days (95% Crl: 3.01-4.91) for Tianjin. The proportion of pre-symptomatic transmission was 48% (95% Crl: 32-67) for Singapore and 62% (95% Crl: 50-76) for Tianjin. Reproduction number estimates based on the generation interval distribution were slightly higher than those based on the serial interval distribution. Sensitivity analyses showed that estimating these quantities from outbreak data requires detailed contact tracing information. Conclusion: High estimates of the proportion of pre-symptomatic transmission imply that case finding and contact tracing need to be supplemented by physical distancing measures in order to control the COVID-19 outbreak. Notably, quarantine and other containment measures were already in place at the time of data collection, which may inflate the proportion of infections from pre-symptomatic individuals.-
dc.description.sponsorshipNH acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement 682540 - TransMID). CF, NH and JW acknowledge funding from the European Union's Horizon 2020 research and innovation programme (project EpiPose No 101003688).-
dc.language.isoen-
dc.publisherEUR CENTRE DIS PREVENTION & CONTROL-
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made. Any supplementary material referenced in the article can be found in the online version. This article is copyright of the authors or their affiliated institutions, 2020.-
dc.titleEstimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020-
dc.typeJournal Contribution-
dc.identifier.epage19-
dc.identifier.issue17-
dc.identifier.spage12-
dc.identifier.volume25-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesGanyani, T (reprint author), Hasselt Univ, Data Sci Inst, I BioStat, Hasselt, Belgium.-
dc.description.notestapiwa.ganyani@uhasselt.be-
dc.description.otherGanyani, T (corresponding author), Hasselt Univ, Data Sci Inst, I BioStat, Hasselt, Belgium. tapiwa.ganyani@uhasselt.be-
local.publisher.placeTOMTEBODAVAGEN 11A, STOCKHOLM, 171 83, SWEDEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr2000257-
local.type.programmeH2020-
local.relation.h2020682540-
dc.source.typeArticle-
dc.identifier.doi10.2807/1560-7917.ES.2020.25.17.2000257-
dc.identifier.pmid32372755-
dc.identifier.isiWOS:000530880200003-
dc.contributor.orcidKarabulut, Erman/0000-0002-0787-905X-
dc.identifier.eissn-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.contributorGANYANI, Tapiwa-
item.contributorKREMER, Cécile-
item.contributorChen, Dongxuan-
item.contributorTORNERI, Andrea-
item.contributorFAES, Christel-
item.contributorWallinga, Jacco-
item.contributorHENS, Niel-
item.validationecoom 2021-
item.fullcitationGANYANI, Tapiwa; KREMER, Cécile; Chen, Dongxuan; TORNERI, Andrea; FAES, Christel; Wallinga, Jacco & HENS, Niel (2020) Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. In: EUROSURVEILLANCE, 25 (17) , p. 12 -19.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn1025-496X-
crisitem.journal.eissn1560-7917-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
tapiwa.pdfPublished version315.7 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

13
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

307
checked on Apr 22, 2024

Page view(s)

84
checked on Sep 7, 2022

Download(s)

34
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.