Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/314
Title: Transformation of Non Positive Semidefinite Correlation Matrices
Authors: Rousseeuw, Peter J.
MOLENBERGHS, Geert 
Issue Date: 1993
Source: Communications in Statistics, Theory and Methods, 22(4), p. 965-984
Abstract: In multivariate statistics, estimation of the covariance or correlation matrix is of crucial importance. Computational and other arguments often lead to the use of coordinate-dependent estimators, yielding matrices that are symmetric but not positive semidefinite. We briefly discuss existing methods, based on shrinking, for transforming such matrices into positive semidefinite matrices. A simple method based on eigenvalues is also considered. Taking into account the geometric structure of correlation matrices, a new method is proposed which uses techniques similar to those of multidimensional scaling.
Keywords: EIGENVALUE METHOD; MISSING DATA; MULTIDIMENSIONAL SCALING; MULTIVARIATE PROBIT MODEL; ROBUST CORRELATIONS; SHRINKING
Document URI: http://hdl.handle.net/1942/314
Link to publication/dataset: https://www.researchgate.net/publication/232858104_Transformation_of_Non_Positive_Semidefinite_Correlation_Matrices
https://www.academia.edu/8393364/Transformation_of_non_positive_semidefinite_correlation_matrices
ISSN: 0361-0926
e-ISSN: 1532-415X
DOI: 10.1080/03610928308831068
ISI #: A1993KZ73700002
Rights: (C) 1993 by Marcel Dekker Inc.
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
1993_Transformation_nonpositive_corr_CommStat.pdf
  Restricted Access
Published version666.88 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.