Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32589
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArco, Leticia-
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorVANHOENSHOVEN, Frank-
dc.contributor.authorLara, Ana Laura-
dc.contributor.authorCasas, Gladys-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2020-11-09T13:58:06Z-
dc.date.available2020-11-09T13:58:06Z-
dc.date.issued2021-
dc.date.submitted2020-11-09T11:59:26Z-
dc.identifier.citationData mining and knowledge discovery, 35(1), p. 290-320-
dc.identifier.issn1384-5810-
dc.identifier.urihttp://hdl.handle.net/1942/32589-
dc.description.abstractDecision Model and Notation (DMN) has become a relevant topic for organizations since it allows users to control their processes and organizational decisions. The increasing use of DMN decision tables to capture critical business knowledge raises the need for supporting analysis tasks such as the extraction of inputs, outputs and their relations from natural language descriptions. In this paper, we create a stepping stone towards implementing a Natural Language Processing framework to model decisions based on the DMN standard. Our proposal contributes to the generation of decision rules and tables from a single sentence analysis. This framework comprises three phases: (1) discourse and semantic analysis, (2) syntactic analysis and (3) decision table construction. To the best of our knowledge, this is the first attempt devoted to automatically discovering decision rules according to the DMN terminology from natural language descriptions. Aiming at assessing the quality of the resultant decision tables, we have conducted a survey involving 16 DMN 2 Leticia Arco et al. experts. The results have shown that our framework is able to generate semantically correct tables. It is convenient to mention that our proposal does not aim to replace analysts but support them in creating better models with less effort.-
dc.description.sponsorshipThis research was supported by the special research fund for incoming mobility of Hasselt University, Belgium. The authors gratefully acknowledge Veronika Boyanova and Aziz Yarahmadi for providing useful descriptions in our experiments, as well as the experts who kindly answered the survey-
dc.language.isoen-
dc.publisherSPRINGER-
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020.-
dc.subject.otherDecision Modeling and Notation-
dc.subject.otherDecision rules-
dc.subject.otherDecision tables-
dc.subject.otherNatural Language Processing-
dc.titleNatural language techniques supporting decision modelers-
dc.typeJournal Contribution-
dc.identifier.epage320-
dc.identifier.issue1-
dc.identifier.spage290-
dc.identifier.volume35-
local.bibliographicCitation.jcatA1-
local.publisher.placeVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1007/s10618-020-00718-4-
dc.identifier.isiWOS:000587086800001-
dc.identifier.eissn1573-756X-
local.provider.typeCrossRef-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.fullcitationArco, Leticia; NAPOLES RUIZ, Gonzalo; VANHOENSHOVEN, Frank; Lara, Ana Laura; Casas, Gladys & VANHOOF, Koen (2021) Natural language techniques supporting decision modelers. In: Data mining and knowledge discovery, 35(1), p. 290-320.-
item.fulltextWith Fulltext-
item.validationecoom 2021-
item.contributorArco, Leticia-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorVANHOENSHOVEN, Frank-
item.contributorLara, Ana Laura-
item.contributorCasas, Gladys-
item.contributorVANHOOF, Koen-
item.accessRightsOpen Access-
crisitem.journal.issn1384-5810-
crisitem.journal.eissn1573-756X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
manuscript.pdfPeer-reviewed author version1.24 MBAdobe PDFView/Open
s10618-020-00718-4.pdf
  Restricted Access
Published version1.64 MBAdobe PDFView/Open    Request a copy
Show simple item record

WEB OF SCIENCETM
Citations

6
checked on May 2, 2024

Page view(s)

54
checked on Sep 6, 2022

Download(s)

108
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.