Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/32742
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arslanova, Alina | - |
dc.contributor.author | Natale, Giovanniantonio | - |
dc.contributor.author | REDDY, Naveen | - |
dc.contributor.author | Clasen, Christian | - |
dc.contributor.author | Fransaer, Jan | - |
dc.date.accessioned | 2020-12-01T09:55:30Z | - |
dc.date.available | 2020-12-01T09:55:30Z | - |
dc.date.issued | 2020 | - |
dc.date.submitted | 2020-11-23T14:03:20Z | - |
dc.identifier.citation | Physics of fluids, 32 (12) (Art N° 127109) | - |
dc.identifier.issn | 1070-6631 | - |
dc.identifier.uri | http://hdl.handle.net/1942/32742 | - |
dc.description.abstract | The motion of a solid, infinitely long cylinder perpendicular to a convective liquid-gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exist along the liquid-gas interface. This results in surface tension gradients at the liquid-gas interface, causing fluid flow around the particle which induces propulsion. For small particles, and thus small Péclet and Reynolds numbers the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid-gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid-gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect result in larger force on a cylinder than forces arising from other self-propulsion mechanisms. | - |
dc.language.iso | en | - |
dc.publisher | American Institute of Physics | - |
dc.title | Thermocapillary motion of a solid cylinder near a liquid-gas interface | - |
dc.type | Journal Contribution | - |
dc.identifier.issue | 12 | - |
dc.identifier.volume | 32 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 127109 | - |
dc.identifier.doi | 10.1063/5.0027309 | - |
dc.identifier.isi | WOS:000600103300002 | - |
dc.identifier.eissn | 1089-7666 | - |
local.provider.type | - | |
local.uhasselt.uhpub | yes | - |
local.uhasselt.international | yes | - |
item.fulltext | With Fulltext | - |
item.contributor | Arslanova, Alina | - |
item.contributor | Natale, Giovanniantonio | - |
item.contributor | REDDY, Naveen | - |
item.contributor | Clasen, Christian | - |
item.contributor | Fransaer, Jan | - |
item.fullcitation | Arslanova, Alina; Natale, Giovanniantonio; REDDY, Naveen; Clasen, Christian & Fransaer, Jan (2020) Thermocapillary motion of a solid cylinder near a liquid-gas interface. In: Physics of fluids, 32 (12) (Art N° 127109). | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2022 | - |
crisitem.journal.issn | 1070-6631 | - |
crisitem.journal.eissn | 1089-7666 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
5.pdf Restricted Access | Published version | 2.72 MB | Adobe PDF | View/Open Request a copy |
Article_thermocapillary_after_revision2.pdf | Peer-reviewed author version | 656.99 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.