Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32745
Title: Auslander's formula and correspondence for exact categories
Authors: HENRARD, Ruben 
Sondre Kvamme
VAN ROOSMALEN, Adam-Christiaan 
Issue Date: 2020
Source: 
Status: Early view
Abstract: The Auslander correspondence is a fundamental result in Auslander-Reiten theory. In this paper we introduce the category $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ of admissibly finitely presented functors and use it to give a version of Auslander correspondence for any exact category $\mathcal{E}$. An important ingredient in the proof is the localization theory of exact categories. We also investigate how properties of $\mathcal{E}$ are reflected in $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$, for example being (weakly) idempotent complete or having enough projectives or injectives. Furthermore, we describe $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ as a subcategory of $\operatorname{mod}(\mathcal{E})$ when $\mathcal{E}$ is a resolving subcategory of an abelian category. This includes the category of Gorenstein projective modules and the category of maximal Cohen-Macaulay modules as special cases. Finally, we use $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ to give a bijection between exact structures on an idempotent complete additive category $\mathcal{C}$ and certain resolving subcategories of $\operatorname{mod}(\mathcal{C})$.
Keywords: Mathematics - Representation Theory
Document URI: http://hdl.handle.net/1942/32745
Link to publication: http://arxiv.org/abs/2011.15107v1
Category: R2
Type: Research Report
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
2011.15107v1.pdf
  Restricted Access
Early view473.18 kBAdobe PDFView/Open    Request a copy
Show full item record

Page view(s)

36
checked on May 24, 2022

Download(s)

2
checked on May 24, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.