Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/32745Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | HENRARD, Ruben | - |
| dc.contributor.author | Sondre , Kvamme | - |
| dc.contributor.author | VAN ROOSMALEN, Adam-Christiaan | - |
| dc.date.accessioned | 2020-12-01T10:05:25Z | - |
| dc.date.available | 2020-12-01T10:05:25Z | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2020-12-01T09:15:18Z | - |
| dc.identifier.citation | Advances in Mathematics, 401 (Art N° 108296) | - |
| dc.identifier.issn | 0001-8708 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/32745 | - |
| dc.description.abstract | The Auslander correspondence is a fundamental result in Auslander-Reiten theory. In this paper we introduce the category $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ of admissibly finitely presented functors and use it to give a version of Auslander correspondence for any exact category $\mathcal{E}$. An important ingredient in the proof is the localization theory of exact categories. We also investigate how properties of $\mathcal{E}$ are reflected in $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$, for example being (weakly) idempotent complete or having enough projectives or injectives. Furthermore, we describe $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ as a subcategory of $\operatorname{mod}(\mathcal{E})$ when $\mathcal{E}$ is a resolving subcategory of an abelian category. This includes the category of Gorenstein projective modules and the category of maximal Cohen-Macaulay modules as special cases. Finally, we use $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ to give a bijection between exact structures on an idempotent complete additive category $\mathcal{C}$ and certain resolving subcategories of $\operatorname{mod}(\mathcal{C})$. | - |
| dc.language.iso | en | - |
| dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | - |
| dc.rights | 2022 Elsevier Inc. All rights reserved. | - |
| dc.subject | Mathematics - Representation Theory | - |
| dc.subject | Mathematics - Representation Theory | - |
| dc.subject | 18E05, 16G50, 18E35 | - |
| dc.subject.other | Exact category | - |
| dc.subject.other | Auslander correspondence | - |
| dc.subject.other | Effaceable functor | - |
| dc.subject.other | Resolving subcategory | - |
| dc.title | Auslander's formula and correspondence for exact categories | - |
| dc.type | Journal Contribution | - |
| dc.identifier.volume | 401 | - |
| local.format.pages | 36 | - |
| local.bibliographicCitation.jcat | A1 | - |
| local.publisher.place | 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| local.bibliographicCitation.artnr | 108296 | - |
| dc.identifier.doi | 10.1016/j.aim.2022.108296 | - |
| dc.identifier.arxiv | 2011.15107 | - |
| dc.identifier.isi | 000793102900002 | - |
| dc.identifier.url | http://arxiv.org/abs/2011.15107v1 | - |
| dc.identifier.eissn | 1090-2082 | - |
| local.provider.type | ArXiv | - |
| local.uhasselt.uhpub | yes | - |
| local.uhasselt.international | yes | - |
| item.fulltext | With Fulltext | - |
| item.fullcitation | HENRARD, Ruben; Sondre , Kvamme & VAN ROOSMALEN, Adam-Christiaan (2022) Auslander's formula and correspondence for exact categories. In: Advances in Mathematics, 401 (Art N° 108296). | - |
| item.contributor | HENRARD, Ruben | - |
| item.contributor | Sondre , Kvamme | - |
| item.contributor | VAN ROOSMALEN, Adam-Christiaan | - |
| item.validation | ecoom 2023 | - |
| item.accessRights | Restricted Access | - |
| crisitem.journal.issn | 0001-8708 | - |
| crisitem.journal.eissn | 1090-2082 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 1-s2.0-S0001870822001128-main.pdf Restricted Access | Published version | 954.09 kB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
9
checked on Jan 2, 2026
WEB OF SCIENCETM
Citations
10
checked on Jan 1, 2026
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.