Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32745
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHENRARD, Ruben-
dc.contributor.authorSondre , Kvamme-
dc.contributor.authorVAN ROOSMALEN, Adam-Christiaan-
dc.date.accessioned2020-12-01T10:05:25Z-
dc.date.available2020-12-01T10:05:25Z-
dc.date.issued2022-
dc.date.submitted2020-12-01T09:15:18Z-
dc.identifier.citationAdvances in Mathematics, 401 (Art N° 108296)-
dc.identifier.issn0001-8708-
dc.identifier.urihttp://hdl.handle.net/1942/32745-
dc.description.abstractThe Auslander correspondence is a fundamental result in Auslander-Reiten theory. In this paper we introduce the category $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ of admissibly finitely presented functors and use it to give a version of Auslander correspondence for any exact category $\mathcal{E}$. An important ingredient in the proof is the localization theory of exact categories. We also investigate how properties of $\mathcal{E}$ are reflected in $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$, for example being (weakly) idempotent complete or having enough projectives or injectives. Furthermore, we describe $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ as a subcategory of $\operatorname{mod}(\mathcal{E})$ when $\mathcal{E}$ is a resolving subcategory of an abelian category. This includes the category of Gorenstein projective modules and the category of maximal Cohen-Macaulay modules as special cases. Finally, we use $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ to give a bijection between exact structures on an idempotent complete additive category $\mathcal{C}$ and certain resolving subcategories of $\operatorname{mod}(\mathcal{C})$.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.rights2022 Elsevier Inc. All rights reserved.-
dc.subjectMathematics - Representation Theory-
dc.subjectMathematics - Representation Theory-
dc.subject18E05, 16G50, 18E35-
dc.subject.otherExact category-
dc.subject.otherAuslander correspondence-
dc.subject.otherEffaceable functor-
dc.subject.otherResolving subcategory-
dc.titleAuslander's formula and correspondence for exact categories-
dc.typeJournal Contribution-
dc.identifier.volume401-
local.format.pages36-
local.bibliographicCitation.jcatA1-
local.publisher.place525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr108296-
dc.identifier.doi10.1016/j.aim.2022.108296-
dc.identifier.arxiv2011.15107-
dc.identifier.isi000793102900002-
dc.identifier.urlhttp://arxiv.org/abs/2011.15107v1-
dc.identifier.eissn1090-2082-
local.provider.typeArXiv-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationHENRARD, Ruben; Sondre , Kvamme & VAN ROOSMALEN, Adam-Christiaan (2022) Auslander's formula and correspondence for exact categories. In: Advances in Mathematics, 401 (Art N° 108296).-
item.contributorHENRARD, Ruben-
item.contributorSondre , Kvamme-
item.contributorVAN ROOSMALEN, Adam-Christiaan-
item.validationecoom 2023-
item.accessRightsRestricted Access-
crisitem.journal.issn0001-8708-
crisitem.journal.eissn1090-2082-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0001870822001128-main.pdf
  Restricted Access
Published version954.09 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

9
checked on Jan 2, 2026

WEB OF SCIENCETM
Citations

10
checked on Jan 1, 2026

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.