Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32745
Title: Auslander's formula and correspondence for exact categories
Authors: HENRARD, Ruben 
Sondre , Kvamme
VAN ROOSMALEN, Adam-Christiaan 
Issue Date: 2022
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Source: Advances in Mathematics, 401 (Art N° 108296)
Abstract: The Auslander correspondence is a fundamental result in Auslander-Reiten theory. In this paper we introduce the category $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ of admissibly finitely presented functors and use it to give a version of Auslander correspondence for any exact category $\mathcal{E}$. An important ingredient in the proof is the localization theory of exact categories. We also investigate how properties of $\mathcal{E}$ are reflected in $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$, for example being (weakly) idempotent complete or having enough projectives or injectives. Furthermore, we describe $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ as a subcategory of $\operatorname{mod}(\mathcal{E})$ when $\mathcal{E}$ is a resolving subcategory of an abelian category. This includes the category of Gorenstein projective modules and the category of maximal Cohen-Macaulay modules as special cases. Finally, we use $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ to give a bijection between exact structures on an idempotent complete additive category $\mathcal{C}$ and certain resolving subcategories of $\operatorname{mod}(\mathcal{C})$.
Keywords: Exact category;Auslander correspondence;Effaceable functor;Resolving subcategory
Document URI: http://hdl.handle.net/1942/32745
Link to publication/dataset: http://arxiv.org/abs/2011.15107v1
ISSN: 0001-8708
e-ISSN: 1090-2082
DOI: 10.1016/j.aim.2022.108296
ISI #: 000793102900002
Rights: 2022 Elsevier Inc. All rights reserved.
Category: A1
Type: Journal Contribution
Validations: ecoom 2023
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
1-s2.0-S0001870822001128-main.pdf
  Restricted Access
Published version954.09 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

8
checked on Nov 5, 2025

WEB OF SCIENCETM
Citations

10
checked on Nov 1, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.