Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/3327
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Smith, KE | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2007-11-27T14:47:44Z | - |
dc.date.available | 2007-11-27T14:47:44Z | - |
dc.date.issued | 1997 | - |
dc.identifier.citation | PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 75(1). p. 32-62 | - |
dc.identifier.issn | 0024-6115 | - |
dc.identifier.uri | http://hdl.handle.net/1942/3327 | - |
dc.description.abstract | Let $W$ be a finite dimensional representation of a linearly reductive group $G$ over a field $k$. Motivated by their work on classical rings of invariants, Levasseur and Stafford asked whether the ring of invariants under $G$ of the symmetric algebra of $W$ has a simple ring of differential operators. In this paper, we show that this is true in prime characteristic. Indeed, if $R$ is a graded subring of a polynomial ring over a perfect field of characteristic $p>0$ and if the inclusion $R\hookrightarrow S$ splits, then $D_k(R)$ is a simple ring. In the last section of the paper, we discuss how one might try to deduce the characteristic zero case from this result. As yet, however, this is a subtle problem and the answer to the question of Levasseur and Stafford remains open in characteristic zero. | - |
dc.format.extent | 347725 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | LONDON MATH SOC | - |
dc.title | Simplicity of rings of differential operators in prime characteristic | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 62 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 32 | - |
dc.identifier.volume | 75 | - |
local.format.pages | 31 | - |
dc.description.notes | LIMBURGS UNIV CTR,DEPT WNI,B-3590 DIEPENBEEK,BELGIUM.Smith, KE, MIT,77 MASSACHUSETTS AVE,CAMBRIDGE,MA 02139. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1112/S0024611597000257 | - |
dc.identifier.isi | A1997XJ78300002 | - |
item.accessRights | Closed Access | - |
item.fulltext | With Fulltext | - |
item.fullcitation | Smith, KE & VAN DEN BERGH, Michel (1997) Simplicity of rings of differential operators in prime characteristic. In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 75(1). p. 32-62. | - |
item.contributor | Smith, KE | - |
item.contributor | VAN DEN BERGH, Michel | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
0209275v1.pdf | 339.58 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
93
checked on Oct 5, 2025
WEB OF SCIENCETM
Citations
87
checked on Oct 11, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.