Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3327
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSmith, KE-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-27T14:47:44Z-
dc.date.available2007-11-27T14:47:44Z-
dc.date.issued1997-
dc.identifier.citationPROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 75(1). p. 32-62-
dc.identifier.issn0024-6115-
dc.identifier.urihttp://hdl.handle.net/1942/3327-
dc.description.abstractLet $W$ be a finite dimensional representation of a linearly reductive group $G$ over a field $k$. Motivated by their work on classical rings of invariants, Levasseur and Stafford asked whether the ring of invariants under $G$ of the symmetric algebra of $W$ has a simple ring of differential operators. In this paper, we show that this is true in prime characteristic. Indeed, if $R$ is a graded subring of a polynomial ring over a perfect field of characteristic $p>0$ and if the inclusion $R\hookrightarrow S$ splits, then $D_k(R)$ is a simple ring. In the last section of the paper, we discuss how one might try to deduce the characteristic zero case from this result. As yet, however, this is a subtle problem and the answer to the question of Levasseur and Stafford remains open in characteristic zero.-
dc.format.extent347725 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherLONDON MATH SOC-
dc.titleSimplicity of rings of differential operators in prime characteristic-
dc.typeJournal Contribution-
dc.identifier.epage62-
dc.identifier.issue1-
dc.identifier.spage32-
dc.identifier.volume75-
local.format.pages31-
dc.description.notesLIMBURGS UNIV CTR,DEPT WNI,B-3590 DIEPENBEEK,BELGIUM.Smith, KE, MIT,77 MASSACHUSETTS AVE,CAMBRIDGE,MA 02139.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1112/S0024611597000257-
dc.identifier.isiA1997XJ78300002-
item.fulltextWith Fulltext-
item.contributorSmith, KE-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationSmith, KE & VAN DEN BERGH, Michel (1997) Simplicity of rings of differential operators in prime characteristic. In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 75(1). p. 32-62.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
0209275v1.pdf339.58 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.