Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/3327
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Smith, KE | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2007-11-27T14:47:44Z | - |
dc.date.available | 2007-11-27T14:47:44Z | - |
dc.date.issued | 1997 | - |
dc.identifier.citation | PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 75(1). p. 32-62 | - |
dc.identifier.issn | 0024-6115 | - |
dc.identifier.uri | http://hdl.handle.net/1942/3327 | - |
dc.description.abstract | Let $W$ be a finite dimensional representation of a linearly reductive group $G$ over a field $k$. Motivated by their work on classical rings of invariants, Levasseur and Stafford asked whether the ring of invariants under $G$ of the symmetric algebra of $W$ has a simple ring of differential operators. In this paper, we show that this is true in prime characteristic. Indeed, if $R$ is a graded subring of a polynomial ring over a perfect field of characteristic $p>0$ and if the inclusion $R\hookrightarrow S$ splits, then $D_k(R)$ is a simple ring. In the last section of the paper, we discuss how one might try to deduce the characteristic zero case from this result. As yet, however, this is a subtle problem and the answer to the question of Levasseur and Stafford remains open in characteristic zero. | - |
dc.format.extent | 347725 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | LONDON MATH SOC | - |
dc.title | Simplicity of rings of differential operators in prime characteristic | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 62 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 32 | - |
dc.identifier.volume | 75 | - |
local.format.pages | 31 | - |
dc.description.notes | LIMBURGS UNIV CTR,DEPT WNI,B-3590 DIEPENBEEK,BELGIUM.Smith, KE, MIT,77 MASSACHUSETTS AVE,CAMBRIDGE,MA 02139. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1112/S0024611597000257 | - |
dc.identifier.isi | A1997XJ78300002 | - |
item.fulltext | With Fulltext | - |
item.contributor | Smith, KE | - |
item.contributor | VAN DEN BERGH, Michel | - |
item.fullcitation | Smith, KE & VAN DEN BERGH, Michel (1997) Simplicity of rings of differential operators in prime characteristic. In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 75(1). p. 32-62. | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
0209275v1.pdf | 339.58 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.