Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/33320
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | URANGA PINA, Rolando | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | Allende, Sira | - |
dc.date.accessioned | 2021-02-08T09:44:08Z | - |
dc.date.available | 2021-02-08T09:44:08Z | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2021-02-03T11:20:29Z | - |
dc.identifier.citation | Communications in statistics. Theory and methods, 51 (15), p. 5146-5161 | - |
dc.identifier.issn | 0361-0926 | - |
dc.identifier.uri | http://hdl.handle.net/1942/33320 | - |
dc.description.abstract | Missing data is a common problem in general applied studies, and specially in clinical trials. For implementing sensitivity analysis, several multiple imputation methods exist, like sequential imputation, which restricts to monotone missingness, and Bayesian, where the imputation and analysis models differ, entailing overestimation of variance. Also, full conditional specification provides a conditional interpretation of sensitivity parameters, requiring further calibration to get the desired marginal interpretation. We propose in this paper a multiple imputation procedure, based on a multivariate linear regression model, which keeps compatibility in sensitivity analysis under intermittent missingness, providing a marginal interpretation of the elicited parameters. Simulation studies show that the method behaves well with longitudinal data and remains robust under demanding constraints. We conclude the possibility of situations not covered by the existing methods and well suited for our proposal, which allows more efficient handling of a given multivariate linear regression structure. Its use is illustrated in a real case study, where a sensitivity analysis is accomplished. | - |
dc.description.sponsorship | Financial support from the VLIR-UOS JOINT-project "A Cuban-Flemish Training and Research Program in Data Science and Big Data Analysis" (2018-2020) is gratefully acknowledged. | - |
dc.language.iso | en | - |
dc.publisher | TAYLOR & FRANCIS INC | - |
dc.subject.other | Missing data | - |
dc.subject.other | multiple imputation | - |
dc.subject.other | sensitivity analysis | - |
dc.subject.other | clinical trial | - |
dc.subject.other | Gibbs sampler | - |
dc.title | A multiple regression imputation method with application to sensitivity analysis under intermittent missingness | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 5161 | - |
dc.identifier.issue | 15 | - |
dc.identifier.spage | 5146 | - |
dc.identifier.volume | 51 | - |
local.format.pages | 16 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Uranga, R (corresponding author), Natl Ctr Clin Trials, Dept Data Management & Stat, 5th A & 60 St, Havana 11300, Cuba. | - |
dc.description.notes | rolando@cencec.sld.cu | - |
dc.description.other | Uranga, R (corresponding author), Natl Ctr Clin Trials, Dept Data Management & Stat, 5th A & 60 St, Havana 11300, Cuba. rolando@cencec.sld.cu | - |
local.publisher.place | 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1080/03610926.2020.1834581 | - |
dc.identifier.isi | WOS:000597709000001 | - |
dc.contributor.orcid | Molenberghs, Geert/0000-0002-6453-5448 | - |
dc.identifier.eissn | 1532-415X | - |
dc.identifier.eissn | 1532-415X | - |
local.provider.type | wosris | - |
local.uhasselt.uhpub | yes | - |
local.description.affiliation | [Uranga, Rolando] Natl Ctr Clin Trials, Dept Data Management & Stat, 5th A & 60 St, Havana 11300, Cuba. | - |
local.description.affiliation | [Molenberghs, Geert] Hasselt & Leuven Univ, Int Inst Biostat & Stat Bioinformat, Hasselt, Belgium. | - |
local.description.affiliation | [Allende, Sira] Univ Havana, Dept Appl Math Math & Computat Bldg, Havana, Cuba. | - |
local.uhasselt.international | yes | - |
item.validation | ecoom 2022 | - |
item.contributor | URANGA PINA, Rolando | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | Allende, Sira | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
item.fullcitation | URANGA PINA, Rolando; MOLENBERGHS, Geert & Allende, Sira (2022) A multiple regression imputation method with application to sensitivity analysis under intermittent missingness. In: Communications in statistics. Theory and methods, 51 (15), p. 5146-5161. | - |
crisitem.journal.issn | 0361-0926 | - |
crisitem.journal.eissn | 1532-415X | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
CIS-MI-MLR-2020.09.22.09.00.pdf | Peer-reviewed author version | 262.94 kB | Adobe PDF | View/Open |
587.pdf Restricted Access | Published version | 2.02 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.