Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33320
Full metadata record
DC FieldValueLanguage
dc.contributor.authorURANGA PINA, Rolando-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorAllende, Sira-
dc.date.accessioned2021-02-08T09:44:08Z-
dc.date.available2021-02-08T09:44:08Z-
dc.date.issued2022-
dc.date.submitted2021-02-03T11:20:29Z-
dc.identifier.citationCommunications in statistics. Theory and methods, 51 (15), p. 5146-5161-
dc.identifier.issn0361-0926-
dc.identifier.urihttp://hdl.handle.net/1942/33320-
dc.description.abstractMissing data is a common problem in general applied studies, and specially in clinical trials. For implementing sensitivity analysis, several multiple imputation methods exist, like sequential imputation, which restricts to monotone missingness, and Bayesian, where the imputation and analysis models differ, entailing overestimation of variance. Also, full conditional specification provides a conditional interpretation of sensitivity parameters, requiring further calibration to get the desired marginal interpretation. We propose in this paper a multiple imputation procedure, based on a multivariate linear regression model, which keeps compatibility in sensitivity analysis under intermittent missingness, providing a marginal interpretation of the elicited parameters. Simulation studies show that the method behaves well with longitudinal data and remains robust under demanding constraints. We conclude the possibility of situations not covered by the existing methods and well suited for our proposal, which allows more efficient handling of a given multivariate linear regression structure. Its use is illustrated in a real case study, where a sensitivity analysis is accomplished.-
dc.description.sponsorshipFinancial support from the VLIR-UOS JOINT-project "A Cuban-Flemish Training and Research Program in Data Science and Big Data Analysis" (2018-2020) is gratefully acknowledged.-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.subject.otherMissing data-
dc.subject.othermultiple imputation-
dc.subject.othersensitivity analysis-
dc.subject.otherclinical trial-
dc.subject.otherGibbs sampler-
dc.titleA multiple regression imputation method with application to sensitivity analysis under intermittent missingness-
dc.typeJournal Contribution-
dc.identifier.epage5161-
dc.identifier.issue15-
dc.identifier.spage5146-
dc.identifier.volume51-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notesUranga, R (corresponding author), Natl Ctr Clin Trials, Dept Data Management & Stat, 5th A & 60 St, Havana 11300, Cuba.-
dc.description.notesrolando@cencec.sld.cu-
dc.description.otherUranga, R (corresponding author), Natl Ctr Clin Trials, Dept Data Management & Stat, 5th A & 60 St, Havana 11300, Cuba. rolando@cencec.sld.cu-
local.publisher.place530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/03610926.2020.1834581-
dc.identifier.isiWOS:000597709000001-
dc.contributor.orcidMolenberghs, Geert/0000-0002-6453-5448-
dc.identifier.eissn1532-415X-
dc.identifier.eissn1532-415X-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Uranga, Rolando] Natl Ctr Clin Trials, Dept Data Management & Stat, 5th A & 60 St, Havana 11300, Cuba.-
local.description.affiliation[Molenberghs, Geert] Hasselt & Leuven Univ, Int Inst Biostat & Stat Bioinformat, Hasselt, Belgium.-
local.description.affiliation[Allende, Sira] Univ Havana, Dept Appl Math Math & Computat Bldg, Havana, Cuba.-
local.uhasselt.internationalyes-
item.validationecoom 2022-
item.contributorURANGA PINA, Rolando-
item.contributorMOLENBERGHS, Geert-
item.contributorAllende, Sira-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationURANGA PINA, Rolando; MOLENBERGHS, Geert & Allende, Sira (2022) A multiple regression imputation method with application to sensitivity analysis under intermittent missingness. In: Communications in statistics. Theory and methods, 51 (15), p. 5146-5161.-
crisitem.journal.issn0361-0926-
crisitem.journal.eissn1532-415X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
CIS-MI-MLR-2020.09.22.09.00.pdfPeer-reviewed author version262.94 kBAdobe PDFView/Open
587.pdf
  Restricted Access
Published version2.02 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.