Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33444
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHEN, Siang-
dc.contributor.authorHuang, Kai-
dc.contributor.authorXiong, Dongliang-
dc.contributor.authorLI, Bowen-
dc.contributor.authorCLAESEN, Luc-
dc.date.accessioned2021-02-12T13:09:11Z-
dc.date.available2021-02-12T13:09:11Z-
dc.date.issued2020-
dc.date.submitted2021-02-12T11:55:58Z-
dc.identifier.citationFarkaš, Igor; Masulli, Paolo; Wermter, Stefan (Ed.). Artificial Neural Networks and Machine Learning – ICANN 2020 , Springer international publishing AG, p. 3 -14-
dc.identifier.isbn978-3-030-61615-1-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/33444-
dc.description.abstractPruning residual neural networks is a challenging task due to the constraints induced by cross layer connections. Many existing approaches assign channels connected by skip-connections to the same group and prune them simultaneously, limiting the pruning ratio on those troublesome filters. Instead, we propose a Fine-grained Channel Pruning (FCP) method that allows any channels to be pruned independently. To avoid the misalignment problem between convolution and skip connection , we always keep the residual addition operations alive. Thus we can obtain a novel efficient residual architecture by removing any unimportant channels without the alignment constraint. Besides classification, We further apply FCP on residual models for image super-resolution, which is a low-level vision task. Extensive experimental results show that FCP can achieve better performance than other state-of-the-art methods in terms of parameter and computation cost. Notably, on CIFAR-10, FCP reduces more than 78% FLOPs on ResNet-56 with no accuracy drop. Moreover, it achieves more than 48% FLOPs reduction on MSR-ResNet with negligible performance degradation.-
dc.language.isoen-
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AG-
dc.rightsSpringer Nature Switzerland AG 2020-
dc.subject.otherChannel pruning-
dc.subject.otherResidual neural network-
dc.subject.otherEfficient network structure-
dc.titleFine-Grained Channel Pruning for Deep Residual Neural Networks-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsFarkaš, Igor-
local.bibliographicCitation.authorsMasulli, Paolo-
local.bibliographicCitation.authorsWermter, Stefan-
local.bibliographicCitation.conferencedate2020, September 15-18-
local.bibliographicCitation.conferencename29th International Conference on Artificial Neural Networks (ICANN)-
local.bibliographicCitation.conferenceplaceBratislava, Slovakia-
dc.identifier.epage14-
dc.identifier.spage3-
dc.identifier.volume12397-
local.format.pages10-
local.bibliographicCitation.jcatC1-
local.publisher.placeGEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.type.programmeVSC-
dc.identifier.doi10.1007/978-3-030-61616-8_1-
dc.identifier.isi000713797800001-
local.provider.typeCrossRef-
local.bibliographicCitation.btitleArtificial Neural Networks and Machine Learning – ICANN 2020-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorCHEN, Siang-
item.contributorHuang, Kai-
item.contributorXiong, Dongliang-
item.contributorLI, Bowen-
item.contributorCLAESEN, Luc-
item.fullcitationCHEN, Siang; Huang, Kai; Xiong, Dongliang; LI, Bowen & CLAESEN, Luc (2020) Fine-Grained Channel Pruning for Deep Residual Neural Networks. In: Farkaš, Igor; Masulli, Paolo; Wermter, Stefan (Ed.). Artificial Neural Networks and Machine Learning – ICANN 2020 , Springer international publishing AG, p. 3 -14.-
item.accessRightsOpen Access-
item.validationecoom 2022-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Fine-grained Channel Pruning for Deep Residual Neural Networks.pdfPeer-reviewed author version494.04 kBAdobe PDFView/Open
Fine-Grained Channel Pruning for Deep Residual Neural Networks.pdf
  Restricted Access
Published version695.06 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.