Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/33817
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | VAN HOUTVEN, Joris | - |
dc.contributor.author | HOOYBERGHS, Jef | - |
dc.contributor.author | Laukens, Kris | - |
dc.contributor.author | VALKENBORG, Dirk | - |
dc.date.accessioned | 2021-04-02T12:04:38Z | - |
dc.date.available | 2021-04-02T12:04:38Z | - |
dc.date.issued | 2021 | - |
dc.date.submitted | 2021-03-22T23:33:29Z | - |
dc.identifier.citation | Journal of Proteome Research, 20 (4) , p. 2151 -2156 | - |
dc.identifier.issn | 1535-3893 | - |
dc.identifier.uri | http://hdl.handle.net/1942/33817 | - |
dc.description.abstract | For differential expression studies in all omics disciplines, data normalization is a crucial step that is often subject to a balance between speed and effectiveness. To keep up with the data produced by high-throughput instruments, researchers require fast and easy-to-use yet effective methods that fit into automated analysis pipelines. The CONSTANd normalization method meets these criteria, so we have made its source code available for R/BioConductor and Python. We briefly review the method and demonstrate how it can be used in different omics contexts for experiments of any scale. Widespread adoption across omics disciplines would ease data integration in multiomics experiments. | - |
dc.language.iso | en | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.rights | 2021 American Chemical Society | - |
dc.subject.other | normalization | - |
dc.subject.other | transcriptomics | - |
dc.subject.other | quantitative | - |
dc.subject.other | proteomics | - |
dc.subject.other | mass spectrometry | - |
dc.subject.other | data-driven | - |
dc.subject.other | multiomics | - |
dc.subject.other | workflow | - |
dc.subject.other | quality control | - |
dc.title | CONSTANd: An Efficient Normalization Method for Relative Quantification in Small- and Large-Scale Omics Experiments in R BioConductor and Python | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 2156 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 2151 | - |
dc.identifier.volume | 20 | - |
local.format.pages | 6 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | 1155 16TH ST, NW, WASHINGTON, DC 20036 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1021/acs.jproteome.0c00977 | - |
dc.identifier.pmid | 33703904 | - |
dc.identifier.isi | 000637005900042 | - |
dc.identifier.eissn | 1535-3907 | - |
local.provider.type | - | |
local.uhasselt.uhpub | yes | - |
local.uhasselt.international | no | - |
item.fulltext | With Fulltext | - |
item.contributor | VAN HOUTVEN, Joris | - |
item.contributor | HOOYBERGHS, Jef | - |
item.contributor | Laukens, Kris | - |
item.contributor | VALKENBORG, Dirk | - |
item.fullcitation | VAN HOUTVEN, Joris; HOOYBERGHS, Jef; Laukens, Kris & VALKENBORG, Dirk (2021) CONSTANd: An Efficient Normalization Method for Relative Quantification in Small- and Large-Scale Omics Experiments in R BioConductor and Python. In: Journal of Proteome Research, 20 (4) , p. 2151 -2156. | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2022 | - |
crisitem.journal.issn | 1535-3893 | - |
crisitem.journal.eissn | 1535-3907 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Author version.pdf | Peer-reviewed author version | 912.96 kB | Adobe PDF | View/Open |
acs.jproteome.0c00977.pdf Restricted Access | Published version | 1.58 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.