Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33822
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGARCIA BARRADO, Leandro-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.date.accessioned2021-04-02T12:47:15Z-
dc.date.available2021-04-02T12:47:15Z-
dc.date.issued2021-
dc.date.submitted2021-03-02T11:03:36Z-
dc.identifier.citationClinical trials, 18 (2) , p. 137 -146-
dc.identifier.issn1740-7745-
dc.identifier.issn1740-7753-
dc.identifier.urihttp://hdl.handle.net/1942/33822-
dc.description.abstractObjective: We investigate the impact of biomarker assay's accuracy on the operating characteristics of a Bayesian biomarker-driven outcome-adaptive randomization design. Methods: In a simulation study, we assume a trial with two treatments, two biomarker-based strata, and a binary clinical outcome (response). P-bt denotes the probability of response for treatment t (t = 0 or 1) in biomarker stratum (b = 0 or 1). Four different scenarios in terms of true underlying response probabilities are considered: a null (P-00 = P-01 = 0.25, P-10 = P-11= 0.25) and consistent (P-00 = P-10 = 0.25, P-01 = 0.5) treatment effect scenario, as well as a quantitative (P-00 = P-01 = P-10 = 0.25, P-11 = 0.5) and a qualitative (P-00 = P-11 = 0.5, P-01 = P-10 = 0.25) stratum-treatment interaction. For each scenario, we compare the case of a perfect with the case of an imperfect biomarker assay with sensitivity and specificity of 0.8 and 0.7, respectively. In addition, biomarker-positive prevalence values P(B = 1) = 0.2 and 0.5 are investigated. Results: Results show that the use of an imperfect assay affects the operational characteristics of the Bayesian biomarker-based outcome-adaptive randomization design. In particular, the misclassification causes a substantial reduction in power accompanied by a considerable increase in the type-I error probability. The magnitude of these effects depends on the sensitivity and specificity of the assay, as well as on the distribution of the biomarker in the patient population. Conclusion: With an imperfect biomarker assay, the decision to apply a biomarker-based outcome-adaptive randomization design may require careful reflection.-
dc.description.sponsorshipThe computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. The authors are grateful to Marc Buyse for his comments related to various versions of this manuscript.-
dc.language.isoen-
dc.publisherSAGE PUBLICATIONS LTD-
dc.rightsThe Author(s) 2020-
dc.subject.otherBayesian statistics-
dc.subject.otheroutcome-adaptive randomization-
dc.subject.otherimperfect assay-
dc.subject.otherbiomarkers-
dc.titleBayesian biomarker-driven outcome-adaptive randomization with an imperfect biomarker assay-
dc.typeJournal Contribution-
dc.identifier.epage146-
dc.identifier.issue2-
dc.identifier.spage137-
dc.identifier.volume18-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notesBarrado, LG (corresponding author), Hasselt Univ, I BioStat, B-3590 Diepenbeek, Belgium.-
dc.description.notesleandro.garciabarrado@uhasselt.be-
dc.description.otherBarrado, LG (corresponding author), Hasselt Univ, I BioStat, B-3590 Diepenbeek, Belgium. leandro.garciabarrado@uhasselt.be-
local.publisher.place1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeVSC-
dc.identifier.doi10.1177/1740774520964202-
dc.identifier.pmid33231131-
dc.identifier.isiWOS:000618431200001-
dc.contributor.orcidGarcia Barrado, Leandro/0000-0003-0793-9881-
dc.identifier.eissn1740-7753-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Garcia Barrado, Leandro; Burzykowski, Tomasz] Hasselt Univ, I BioStat, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Garcia Barrado, Leandro; Burzykowski, Tomasz] Int Drug Dev Inst IDDI, Louvain La Neuve, Belgium.-
local.description.affiliation[Burzykowski, Tomasz] Med Univ Bialystok, Dept Stat & Med Informat, Bialystok, Poland.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorGARCIA BARRADO, Leandro-
item.contributorBURZYKOWSKI, Tomasz-
item.fullcitationGARCIA BARRADO, Leandro & BURZYKOWSKI, Tomasz (2021) Bayesian biomarker-driven outcome-adaptive randomization with an imperfect biomarker assay. In: Clinical trials, 18 (2) , p. 137 -146.-
item.accessRightsOpen Access-
item.validationecoom 2022-
crisitem.journal.issn1740-7745-
crisitem.journal.eissn1740-7753-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
BayesOARImpAssay_ClinicalTrials_2020.pdf
  Restricted Access
Published version403.5 kBAdobe PDFView/Open    Request a copy
BAR_Imp_Assay_Manuscript_PeerReviewedAuthorsVersion.pdfPeer-reviewed author version1.26 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.