Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/34097Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | LUNOWA, Stephan | - |
| dc.contributor.author | BRINGEDAL, Carina | - |
| dc.contributor.author | POP, Sorin | - |
| dc.date.accessioned | 2021-05-27T09:18:12Z | - |
| dc.date.available | 2021-05-27T09:18:12Z | - |
| dc.date.issued | 2021 | - |
| dc.date.submitted | 2021-05-17T11:49:52Z | - |
| dc.identifier.citation | STUDIES IN APPLIED MATHEMATICS, 147 (1) , p. 84-126 | - |
| dc.identifier.issn | 0022-2526 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/34097 | - |
| dc.description.abstract | We consider a model for the flow of two immiscible fluids in a two-dimensional thin strip of varying width. This represents an idealization of a pore in a porous medium. The interface separating the fluids forms a freely moving interface in contact with the wall and is driven by the fluid flow and surface tension. The contact-line model incorporates Navier-slip boundary conditions and a dynamic and possibly hysteretic contact angle law. We assume a scale separation between the typical width and the length of the thin strip. Based on asymptotic expansions, we derive effective models for the two-phase flow. These models form a system of differential algebraic equations for the interface position and the total flux. The result is Darcy-type equations for the flow, combined with a capillary pressure-saturation relationship involving dynamic effects. Finally, we provide some numerical examples to show the effect of a varying wall width, of the viscosity ratio, of the slip boundary condition as well as of having a dynamic contact angle law. | - |
| dc.description.sponsorship | Universiteit Hasselt, Grant/Award Number: BOF17NI01; Deutsche Forschungsgemeinschaft, Grant/Award Number: 327154368; FondsWetenschappelijk Onderzoek, Grant/Award Numbers: G051418N, G0G1316M | - |
| dc.language.iso | en | - |
| dc.publisher | WILEY | - |
| dc.rights | 2021 Wiley Periodicals LLC | - |
| dc.subject.other | asymptotic expansions | - |
| dc.subject.other | dynamic contact angle | - |
| dc.subject.other | freely moving interface | - |
| dc.subject.other | thin strip | - |
| dc.subject.other | two‐ | - |
| dc.subject.other | phase flow | - |
| dc.subject.other | upscaled models | - |
| dc.title | On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 126 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | 84 | - |
| dc.identifier.volume | 147 | - |
| local.bibliographicCitation.jcat | A1 | - |
| local.publisher.place | 111 RIVER ST, HOBOKEN 07030-5774, NJ USA | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.identifier.doi | 10.1111/sapm.12376 | - |
| dc.identifier.isi | 000640117200001 | - |
| dc.identifier.eissn | 1467-9590 | - |
| local.provider.type | - | |
| local.uhasselt.uhpub | yes | - |
| local.uhasselt.international | yes | - |
| item.validation | ecoom 2022 | - |
| item.fulltext | With Fulltext | - |
| item.contributor | LUNOWA, Stephan | - |
| item.contributor | BRINGEDAL, Carina | - |
| item.contributor | POP, Sorin | - |
| item.fullcitation | LUNOWA, Stephan; BRINGEDAL, Carina & POP, Sorin (2021) On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip. In: STUDIES IN APPLIED MATHEMATICS, 147 (1) , p. 84-126. | - |
| item.accessRights | Open Access | - |
| crisitem.journal.issn | 0022-2526 | - |
| crisitem.journal.eissn | 1467-9590 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Stud Appl Math - 2021 - Lunowa - On an averaged model for immiscible two‐phase flow with surface tension and dynamic.pdf | Published version | 1.75 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
10
checked on Dec 11, 2025
WEB OF SCIENCETM
Citations
10
checked on Dec 9, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.