Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34275
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKučera, Václav-
dc.contributor.authorLukáčová-Medviďová, Mária-
dc.contributor.authorNoelle, Sebastian-
dc.contributor.authorSCHUETZ, Jochen-
dc.contributor.editorChleboun, J.-
dc.contributor.editorKus, P.-
dc.contributor.editorPrikryl, P.-
dc.contributor.editorRozložník, M.-
dc.contributor.editorSegeth, K.-
dc.contributor.editorSistek, J.-
dc.date.accessioned2021-06-14T09:03:39Z-
dc.date.available2021-06-14T09:03:39Z-
dc.date.issued2021-
dc.date.submitted2021-06-08T08:02:36Z-
dc.identifier.citationJ. Chleboun, P. Kůs, P. Přikryl, M. Rozložník, K. Segeth, J. Šístek (Ed.). Programs and Algorithms of Numerical Mathematics. Proceedings of Seminar, Institute of Mathematics CAS, ACAD SCIENCES CZECH REPUBLIC, p. 69 -78-
dc.identifier.isbn9788085823714-
dc.identifier.urihttp://hdl.handle.net/1942/34275-
dc.description.abstractIn this note, we give an overview of the authors' paper [6] which deals with asymptotic consistency of a class of linearly implicit schemes for the compressible Euler equations. This class is based on a linearization of the nonlinear fluxes at a reference state and includes the scheme of Feistauer and Ku\v{c}era [3] as well as the class of RS-IMEX schemes [8,5,1] as special cases. We prove that the linearization gives an asymptotically consistent solution in the low-Mach limit under the assumption of a discrete Hilbert expansion. The existence of the Hilbert expansion is shown under simplifying assumptions.-
dc.description.sponsorshipThe work of V. Kučera is supported by the Czech Science Foundation, project No. 20-01074S. The work of M. Lukáčová has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - TRR/SFB 146 - Project number 233630050, TRR/SFB 165 Waves to Weather - Project A2, and by the Mainz Institute of Multiscale Modelling. The work of S. Noelle was funded funded by the DFG Projektnummer 320021702/GRK2326.-
dc.language.isoen-
dc.publisherACAD SCIENCES CZECH REPUBLIC-
dc.subject.otherasymptotic preserving schemes-
dc.subject.othercompressible Euler equations-
dc.subject.otherlow-Mach limit-
dc.subject.otherHilbert expansion-
dc.titleLow-Mach consistency of a class of linearly implicit schemes for the compressible Euler equations-
dc.typeProceedings Paper-
dc.relation.edition20-
local.bibliographicCitation.conferencedate2020, June 21-26-
local.bibliographicCitation.conferencenameSeminar on Programs and Algorithms of Numerical Mathematics-
local.bibliographicCitation.conferenceplaceHejnice-
dc.identifier.epage78-
dc.identifier.spage69-
local.bibliographicCitation.jcatC1-
local.publisher.placePrague-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.21136/panm.2020.07-
dc.identifier.isiWOS:000672803500007-
local.provider.typeCrossRef-
local.bibliographicCitation.btitlePrograms and Algorithms of Numerical Mathematics. Proceedings of Seminar-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.accessRightsOpen Access-
item.fullcitationKučera, Václav; Lukáčová-Medviďová, Mária; Noelle, Sebastian & SCHUETZ, Jochen (2021) Low-Mach consistency of a class of linearly implicit schemes for the compressible Euler equations. In: J. Chleboun, P. Kůs, P. Přikryl, M. Rozložník, K. Segeth, J. Šístek (Ed.). Programs and Algorithms of Numerical Mathematics. Proceedings of Seminar, Institute of Mathematics CAS, ACAD SCIENCES CZECH REPUBLIC, p. 69 -78.-
item.fulltextWith Fulltext-
item.contributorKučera, Václav-
item.contributorLukáčová-Medviďová, Mária-
item.contributorNoelle, Sebastian-
item.contributorSCHUETZ, Jochen-
item.contributorChleboun, J.-
item.contributorKus, P.-
item.contributorPrikryl, P.-
item.contributorRozložník, M.-
item.contributorSegeth, K.-
item.contributorSistek, J.-
item.validationecoom 2022-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
PANM_20-2020-1_10.pdfPublished version359.49 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.