Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34610
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNjage, Patrick Murigu Kamau-
dc.contributor.authorLeekitcharoenphon, Pimlapas-
dc.contributor.authorHansen, Lisbeth Truelstrup-
dc.contributor.authorHendriksen, Rene S.-
dc.contributor.authorFAES, Christel-
dc.contributor.authorAERTS, Marc-
dc.contributor.authorHald, Tine-
dc.date.accessioned2021-08-05T12:39:20Z-
dc.date.available2021-08-05T12:39:20Z-
dc.date.issued2020-
dc.date.submitted2021-07-08T10:15:44Z-
dc.identifier.citationMicroorganisms, 8 (11) (Art N° 1772)-
dc.identifier.urihttp://hdl.handle.net/1942/34610-
dc.description.abstractThe application of high-throughput DNA sequencing technologies (WGS) data remain an increasingly discussed but vastly unexplored resource in the public health domain of quantitative microbial risk assessment (QMRA). This is due to challenges including high dimensionality of WGS data and heterogeneity of microbial growth phenotype data. This study provides an innovative approach for modeling the impact of population heterogeneity in microbial phenotypic stress response and integrates this into predictive models inputting a high-dimensional WGS data for increased precision exposure assessment using an example of Listeria monocytogenes. Finite mixture models were used to distinguish the number of sub-populations for each of the stress phenotypes, acid, cold, salt and desiccation. Machine learning predictive models were selected from six algorithms by inputting WGS data to predict the sub-population membership of new strains with unknown stress response data. An example QMRA was conducted for cultured milk products using the strains of unknown stress phenotype to illustrate the significance of the findings of this study. Increased resistance to stress conditions leads to increased growth, the likelihood of higher exposure and probability of illness. Neglecting within-species genetic and phenotypic heterogeneity in microbial stress response may over or underestimate microbial exposure and eventual risk during QMRA.-
dc.description.sponsorshipFunding: This research has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 643476 (http://www.compare-europe.eu/) and the EU project One Health EJP—“LISTADAPT”. Acknowledgments: Bioinformatics and machine learning modeling were performed using the DeiC National Life Science Supercomputer at DTU).-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).-
dc.subject.otherquantitative microbial risk assessment-
dc.subject.otherwhole genome sequencing-
dc.subject.otherexposure assessment-
dc.subject.otherpredictive modeling-
dc.subject.othermachine learning-
dc.subject.otherfinite mixture models-
dc.subject.otherListeria monocytogenes-
dc.titleQuantitative Microbial Risk Assessment Based on Whole Genome Sequencing Data: Case of Listeria monocytogenes-
dc.typeJournal Contribution-
dc.identifier.issue11-
dc.identifier.volume8-
local.format.pages24-
local.bibliographicCitation.jcatA1-
local.publisher.placeST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr1772-
dc.identifier.doi10.3390/microorganisms8111772-
dc.identifier.pmid33187247-
dc.identifier.isiWOS:000594009600001-
dc.contributor.orcidHald, Tine/0000-0002-1115-9792; Hansen, Lisbeth-
dc.contributor.orcidTruelstrup/0000-0003-0485-5252; Hendriksen, Rene S./0000-0003-2934-8214;-
dc.contributor.orcidLeekitcharoenphon, Pimlapas/0000-0002-5674-0142; FAES,-
dc.contributor.orcidChristel/0000-0002-1878-9869; Njage, Patrick Murigu-
dc.contributor.orcidKamau/0000-0002-4364-5314-
dc.identifier.eissn2076-2607-
local.provider.typewosris-
local.uhasselt.internationalyes-
item.validationecoom 2021-
item.contributorNjage, Patrick Murigu Kamau-
item.contributorLeekitcharoenphon, Pimlapas-
item.contributorHansen, Lisbeth Truelstrup-
item.contributorHendriksen, Rene S.-
item.contributorFAES, Christel-
item.contributorAERTS, Marc-
item.contributorHald, Tine-
item.fullcitationNjage, Patrick Murigu Kamau; Leekitcharoenphon, Pimlapas; Hansen, Lisbeth Truelstrup; Hendriksen, Rene S.; FAES, Christel; AERTS, Marc & Hald, Tine (2020) Quantitative Microbial Risk Assessment Based on Whole Genome Sequencing Data: Case of Listeria monocytogenes. In: Microorganisms, 8 (11) (Art N° 1772).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.eissn2076-2607-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
microorganisms-08-01772.pdfPublished version1.08 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.