Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/35393
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCLAESEN, Jurgen-
dc.contributor.authorVALKENBORG, Dirk-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.date.accessioned2021-09-16T14:18:44Z-
dc.date.available2021-09-16T14:18:44Z-
dc.date.issued2021-
dc.date.submitted2021-09-16T09:13:32Z-
dc.identifier.citationRCM. Rapid communications in mass spectrometry, 35 (19) (Art N° e9162)-
dc.identifier.urihttp://hdl.handle.net/1942/35393-
dc.description.abstractRationale Identification of peptides and proteins is a challenging task in mass spectrometry-based proteomics. Knowledge of the number of sulfur atoms can improve the identification of peptides and proteins. Methods In this article, we propose a method for the prediction of S-atoms based on the aggregated isotope distribution. The Mahalanobis distance is used as dissimilarity measure to compare mass- and intensity-based features from the observed and theoretical isotope distributions. Results The relative abundance of the second and the third aggregated isotopic variants (as compared to the monoisotopic one) and the mass difference between the second and third aggregated isotopic variants are the most important features to predict the number of S-atoms. Conclusions The mass and intensity accuracies of the observed aggregated isotopic variants are insufficient to accurately predict the number of atoms. However, using a limited set of predictions for a peptide, rather than predicting a single number of S-atoms, has a reasonably high prediction accuracy.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2021 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd . This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.-
dc.titlePredicting the number of sulfur atoms in peptides and small proteins based on the observed aggregated isotope distribution-
dc.typeJournal Contribution-
dc.identifier.issue19-
dc.identifier.volume35-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notesClaesen, J (corresponding author), Vrije Univ Amsterdam, Dept Epidemiol & Data Sci, Amsterdam UMC, Amsterdam, Netherlands.-
dc.description.notesj.claesen@amsterdamumc.nl-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre9162-
dc.identifier.doi10.1002/rcm.9162-
dc.identifier.isiWOS:000693422600003-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Claesen, Jurgen] Vrije Univ Amsterdam, Dept Epidemiol & Data Sci, Amsterdam UMC, Amsterdam, Netherlands.-
local.description.affiliation[Claesen, Jurgen] SCK CEN, Microbiol Unit, Mol, Belgium.-
local.description.affiliation[Claesen, Jurgen; Valkenborg, Dirk; Burzykowski, Tomasz] Hasselt Univ, Data Sci Inst, I Biostat, Hasselt, Belgium.-
local.description.affiliation[Burzykowski, Tomasz] Med Univ Bialystok, Dept Stat & Med Informat, Bialystok, Poland.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorCLAESEN, Jurgen-
item.contributorVALKENBORG, Dirk-
item.contributorBURZYKOWSKI, Tomasz-
item.fullcitationCLAESEN, Jurgen; VALKENBORG, Dirk & BURZYKOWSKI, Tomasz (2021) Predicting the number of sulfur atoms in peptides and small proteins based on the observed aggregated isotope distribution. In: RCM. Rapid communications in mass spectrometry, 35 (19) (Art N° e9162).-
item.accessRightsOpen Access-
item.validationecoom 2022-
crisitem.journal.issn0951-4198-
crisitem.journal.eissn1097-0231-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
rcm9162.pdfPublished version1.46 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.