Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/35735
Title: Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation
Authors: Hauser, Leon T.
TIMMERMANS, Joris
van der Windt, Niels
Sil, Angelo F.
de Sa, Nuno Cesar
SOUDZILOVSKAIA, Nadia 
van Bodegom, Peter M.
Issue Date: 2021
Publisher: ELSEVIER SCIENCE INC
Source: Remote sensing of environment, 265 (Art N° 112684)
Abstract: In light of the ongoing global biodiversity crisis, the urge to monitor and map terrestrial plant biodiversity at large spatial extents has spurred research on adequate quantitative methods. The use of spectral diversity metrics from different remote sensing platforms has emerged as a promising tool for such biodiversity assessments. Satellite remote sensing presents the next frontier for implementation of these methods to assess plant diversity with spatial and temporal continuity at truly regional or global scales. However, the question of what exactly is monitored by spectral diversity metrics from relatively coarse multi-spectral satellite observations has remained largely unanswered. In this research, we examined which components contribute to satellite remotely sensed spectral diversity. We assessed the relationships between spectral diversity and in-situ taxonomic and trait diversity, and evaluated the role of confounding factors, vegetation cover, and landscape morphology (slope and elevation), in shaping these relationships. Hereto, we used Sentinel-2 imagery and in-situ field trait and species count data collected in the Montesinho-Nogueira Natura 2000 site (Portugal) together with radiative transfer models to quantify the theoretical link between in-situ trait diversity and simulated spectral diversity. Through the use of linear mixed-effect models, our results highlight that variation in vegetation cover dominates the Sentinel-2's spectral diversity signal (contributing 53-84% of the R2marginal). The vegetation cover component encompasses spatial variability in canopy architecture traits as well as the fraction of bare soil and plant litter spectra. These elements together strongly impact the overall spectral diversity signal, as shown both in our radiative transfer simulations and empirical comparisons. Next to vegetation cover, we found that taxonomic diversity is a significant predictor and covariate of spectral diversity, while the role of leaf trait diversity appeared insignificant in our multispectral dataset. Variation in vegetation cover dominated the spectral diversity signal in our study while it is not necessarily correlated with plant diversity. We, therefore, recommend that future applications of multi-spectral diversity metrics consider the impact of vegetation cover, including soil variability and the role of morphological traits, in shaping leaf trait - canopy reflectance relationships to better understand the ambiguous performance of spectral diversity as a proxy of plant diversity. This will result in higher robustness, consistency, and scalability of spectral diversity metrics for predicting in-situ plant diversity across scales, sensors, and ecosystems in regional biodiversity assessments.
Notes: Hauser, LT (corresponding author), Leiden Univ, Inst Environm Sci, Dept Environm Biol, Leiden, Netherlands.
l.t.hauser@cml.leidenuniv.nl
Keywords: Biodiversity; Spectral diversity; Ecology; Sentinel-2; Functional;diversity; Leaf traits; Vegetation; Species richness; Vegetation cover;;Mediterranean; PROSPECT; PROSAIL; Portugal
Document URI: http://hdl.handle.net/1942/35735
ISSN: 0034-4257
e-ISSN: 1879-0704
DOI: 10.1016/j.rse.2021.112684
ISI #: WOS:000697020700001
Rights: © 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (
Category: A1
Type: Journal Contribution
Validations: ecoom 2022
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
1-s2.0-S0034425721004041-main.pdfPublished version2.97 MBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

25
checked on Apr 23, 2024

Page view(s)

56
checked on Sep 7, 2022

Download(s)

34
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.