Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/35814
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBRADY, Nick-
dc.contributor.authorMees, Maarten-
dc.contributor.authorVereecken, Philippe M.-
dc.contributor.authorSAFARI, Momo-
dc.date.accessioned2021-11-16T10:53:16Z-
dc.date.available2021-11-16T10:53:16Z-
dc.date.issued2021-
dc.date.submitted2021-11-10T12:29:21Z-
dc.identifier.citationJournal of the Electrochemical Society, 168 (11) (Art N° 113501)-
dc.identifier.issn0013-4651-
dc.identifier.urihttp://hdl.handle.net/1942/35814-
dc.description.abstractThis paper asserts that the development of continuum-scale mathematical models utilizing John Newman’s BAND subroutine can be simplified through the use of dual number automatic differentiation. This paper covers the salient features of the BAND algorithm as well as dual numbers and how they can be leveraged to algorithmically linearize systems of partial differential equations; these two concepts can be combined to produce accurate and computationally efficient models while significantly reducing the amount of personnel time necessary by eliminating the time-consuming process of equation linearization. As a result, this methodology facilitates more rapid model prototyping and establishes a more intuitive relationship between the numerical model and the differential equations. By utilizing an existing and validated programming module, dnadmod, these advantages are achieved without burdening the general user with significant additional programming overhead.-
dc.language.isoen-
dc.publisherELECTROCHEMICAL SOC INC-
dc.rights2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BYNC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: permissions@ioppublishing.org. [DOI: 10.1149/1945-7111/ac3274]-
dc.subject.otherBatteries-Li-ion-
dc.subject.otherTheory and Modelling-
dc.subject.otherBatteries-Lithium-
dc.titleImplementation of Dual Number Automatic Differentiation with John Newman's BAND Algorithm-
dc.typeJournal Contribution-
dc.identifier.issue11-
dc.identifier.volume168-
local.format.pages14-
local.bibliographicCitation.jcatA1-
local.publisher.place65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr113501-
dc.identifier.doi10.1149/1945-7111/ac3274-
dc.identifier.isi000716131800001-
dc.identifier.eissn1945-7111-
local.provider.typeCrossRef-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.validationecoom 2022-
item.contributorBRADY, Nick-
item.contributorMees, Maarten-
item.contributorVereecken, Philippe M.-
item.contributorSAFARI, Momo-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.fullcitationBRADY, Nick; Mees, Maarten; Vereecken, Philippe M. & SAFARI, Momo (2021) Implementation of Dual Number Automatic Differentiation with John Newman's BAND Algorithm. In: Journal of the Electrochemical Society, 168 (11) (Art N° 113501).-
crisitem.journal.issn0013-4651-
crisitem.journal.eissn1945-7111-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Brady_2021_J._Electrochem._Soc._168_113501.pdfPublished version2.81 MBAdobe PDFView/Open
Show simple item record

Page view(s)

18
checked on May 19, 2022

Download(s)

10
checked on May 19, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.