Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36124
Title: Toward traceable dosimetry for electronic brachytherapy devices with skin applicators
Authors: RENIERS, Brigitte 
COLSON, Dries 
Wieme, M.
Arits, S.
FEDERIGHI, R.
Lucas, P. Aviles
Elfried, K.
Fernando, G. Y.
DERRIEN, Jonathan 
de Prez, L.
Verhaegen, F.
Issue Date: 2021
Publisher: ELSEVIER IRELAND LTD
Source: Radiotherapy and oncology, 161 , p. S127 -S129
Abstract: Purpose or Objective Proton therapy achieves very high dose conformity around the target, allowing a better protection of the organs at risk (decreasing radiation side effects) [1]. The determination of the relative biological effectiveness (RBE) of protons depends, among other factors, on the lineal energy transfer (LET). Currently, LET calculations are performed using Monte Carlo simulations, which might be affected by several uncertainties. Therefore, devices that help to reduce these uncertainties are essential. Likewise, there is a rising interest in the medical-physics community in placing the enhanced LET of the beam within the tumour or removing it from the most sensitive normal structures around [2]. Nevertheless, there is no instrument to quantify the LET maps with high spatial resolution in clinical scenarios. In this work, we present the first 2D microdosimetry maps in a proton therapy facility in clinical conditions by means of an array of silicon 3D-cylindrical microdetectors [3-5]. Materials and Methods The array of 11×11 independent microdetectors is based on a new diode architecture with 3D-cylindrical electrodes (25 μm diameter, 20 μm depth, and 200 μm pitch) and an inner volume that matches the dimensions of the cellular nucleus. It covers 2.2 mm× 2.2 mm of total radiation sensitive surface. A pristine peak of 100 MeV protons was used in the Orsay Proton Therapy Centre (CPO, France) with clinical fluence rates (~ 10 8 cm-2 ·s-1). Measurements were performed at different depths along the Bragg peak with a phantom of solid-water equivalent material. Results The microdosimetry spectra were obtained at different positions of the Bragg curve (Figure 1). Likewise, we present the first 2D maps of the lineal energy at a clinical facility (Figure 2) with the highest resolution so far (200 µm pitch covering a total area of 2.2 mm× 2.2 mm). Conclusion Microdosimetry measurements were performed at clinical fluence rates without saturation effects. The use of this device would allow medical physicists to guide beam arrangements to apply the LET-painting technique and further RBE optimizations [2]. This work consolidates the capability of the new 3D-cylindrical architecture as microdosimeters as well as commissioning under clinical conditions.
Keywords: Charge collection efficiency (CCE);hadron therapy;ion beam induced charge (IBIC);ion microbeam;microdosimetry;particle detectors;proton therapy;silicon microdosimeters
Document URI: http://hdl.handle.net/1942/36124
ISSN: 0167-8140
e-ISSN: 1879-0887
DOI: 10.1109/tim.2021.3054631
ISI #: WOS:000709667200146
Category: M
Type: Journal Contribution
Appears in Collections:Research publications

Show full item record

Page view(s)

38
checked on Sep 7, 2022

Download(s)

6
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.