Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36174
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGalleni, L.-
dc.contributor.authorFIRAT, Meric-
dc.contributor.authorRadhakrishnan, H. Sivaramakrishnan-
dc.contributor.authorDUERINCKX, Filip-
dc.contributor.authorTOUS, Loic-
dc.contributor.authorPOORTMANS, Jef-
dc.date.accessioned2021-12-14T08:58:25Z-
dc.date.available2021-12-14T08:58:25Z-
dc.date.issued2021-
dc.date.submitted2021-12-11T21:00:20Z-
dc.identifier.citationSolar energy materials and solar cells, 232 , (Art N° 111359)-
dc.identifier.urihttp://hdl.handle.net/1942/36174-
dc.description.abstractWe use temperature-dependent contact resistivity (rho c) measurements to systematically assess the dominant electron transport mechanism in a large set of poly-Si passivating contacts, fabricated by varying (i) the annealing temperature (Tann), (ii) the oxide thickness (tox), (iii) the oxidation method, and (iv) the surface morphology of the Si substrate. The results show that for silicon oxide thicknesses of 1.3-1.5 nm, the dominant transport mechanism changes from tunneling to drift-diffusion via pinholes in the SiOx layer for increasing Tann. This transition occurs for Tann in the range of 850 degrees C-950 degrees C for a 1.5 nm thick thermal oxide, and 700 degrees C-750 degrees C for a 1.3 nm thick wet-chemical oxide, which suggests that pinholes appear in wet-chemical oxides after exposure to lower thermal budgets compared to thermal oxides. For SiOx with tox = 2 nm, grown either thermally or by plasma-enhanced atomic layer deposition, carrier transport is pinhole-dominant for Tann = 1050 degrees C, whereas no electric current through the SiOx layer could be detected for lower Tann. Remarkably, the dominant transport mechanism is not affected by the substrate surface morphology, although lower values of rho c were measured on textured wafers compared to planar surfaces. Lifetime measurements suggest that the best carrier selectivity can be achieved by choosing Tann right above the transition range, but not too high, in order to induce pinhole dominant transport while preserving a good passivation quality.-
dc.description.sponsorshipThe authors would like to acknowledge Ankur Nipane (Columbia University) for his contribution on setting up the measurement method, Joris Van Laer and Tom Daenen for technical support, and Patrick Choulat, Sukhvinder Singh, Arvid van der Heide, Rajiv Sharma (imec), Prof. Marcel di Vece, and Prof. Paolo Piseri (University of Milan) for the fruitful discussions related to this work. The authors are grateful to the anonymous reviewers for critically reading the manuscript and suggesting substantial improvements. The authors also gratefully acknowledge the funding from the European Union’s Horizon 2020 Programme for research, technological development and demonstration under the Grant Agreement no. 857793 (HighLite project) and from the Kuwait Foundation for the Advancement of Sciences (KFAS) under the project number CN18-15EE-01.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2021 Elsevier B.V. All rights reserved.-
dc.subject.otherPoly-Si-
dc.subject.otherPassivating contacts-
dc.subject.otherTunneling transport-
dc.subject.otherPinhole transport-
dc.subject.otherContact resistivity-
dc.subject.otherTransfer length method-
dc.titleMechanisms of charge carrier transport in polycrystalline silicon passivating contacts-
dc.typeJournal Contribution-
dc.identifier.volume232-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notesGalleni, L (corresponding author), IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.-
dc.description.noteslaura.galleni@imec.be-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr111359-
local.type.programmeH2020-
local.relation.h2020857793-
dc.identifier.doi10.1016/j.solmat.2021.111359-
dc.identifier.isiWOS:000694783700005-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Galleni, L.; Firat, M.; Radhakrishnan, H. Sivaramakrishnan; Duerinckx, F.; Tous, L.; Poortmans, J.] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.-
local.description.affiliation[Galleni, L.] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy.-
local.description.affiliation[Firat, M.; Poortmans, J.] Katholieke Univ Leuven, Dept Elect Engn, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium.-
local.description.affiliation[Poortmans, J.] Hasselt Univ, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.validationecoom 2022-
item.contributorGalleni, L.-
item.contributorFIRAT, Meric-
item.contributorRadhakrishnan, H. Sivaramakrishnan-
item.contributorDUERINCKX, Filip-
item.contributorTOUS, Loic-
item.contributorPOORTMANS, Jef-
item.fullcitationGalleni, L.; FIRAT, Meric; Radhakrishnan, H. Sivaramakrishnan; DUERINCKX, Filip; TOUS, Loic & POORTMANS, Jef (2021) Mechanisms of charge carrier transport in polycrystalline silicon passivating contacts. In: Solar energy materials and solar cells, 232 , (Art N° 111359).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn0927-0248-
crisitem.journal.eissn1879-3398-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0927024821004013-main.pdf
  Restricted Access
Published version5.71 MBAdobe PDFView/Open    Request a copy
MechanismsOfChargeCarrierTransport_reviewed.pdfPeer-reviewed author version852.29 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.