Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36174
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGalleni, L.-
dc.contributor.authorFIRAT, Meric-
dc.contributor.authorRadhakrishnan, H. Sivaramakrishnan-
dc.contributor.authorDUERINCKX, Filip-
dc.contributor.authorTOUS, Loic-
dc.contributor.authorPOORTMANS, Jef-
dc.date.accessioned2021-12-14T08:58:25Z-
dc.date.available2021-12-14T08:58:25Z-
dc.date.issued2021-
dc.date.submitted2021-12-11T21:00:20Z-
dc.identifier.citationSolar energy materials and solar cells, 232 , (Art N° 111359)-
dc.identifier.urihttp://hdl.handle.net/1942/36174-
dc.description.abstractWe use temperature-dependent contact resistivity (rho c) measurements to systematically assess the dominant electron transport mechanism in a large set of poly-Si passivating contacts, fabricated by varying (i) the annealing temperature (Tann), (ii) the oxide thickness (tox), (iii) the oxidation method, and (iv) the surface morphology of the Si substrate. The results show that for silicon oxide thicknesses of 1.3-1.5 nm, the dominant transport mechanism changes from tunneling to drift-diffusion via pinholes in the SiOx layer for increasing Tann. This transition occurs for Tann in the range of 850 degrees C-950 degrees C for a 1.5 nm thick thermal oxide, and 700 degrees C-750 degrees C for a 1.3 nm thick wet-chemical oxide, which suggests that pinholes appear in wet-chemical oxides after exposure to lower thermal budgets compared to thermal oxides. For SiOx with tox = 2 nm, grown either thermally or by plasma-enhanced atomic layer deposition, carrier transport is pinhole-dominant for Tann = 1050 degrees C, whereas no electric current through the SiOx layer could be detected for lower Tann. Remarkably, the dominant transport mechanism is not affected by the substrate surface morphology, although lower values of rho c were measured on textured wafers compared to planar surfaces. Lifetime measurements suggest that the best carrier selectivity can be achieved by choosing Tann right above the transition range, but not too high, in order to induce pinhole dominant transport while preserving a good passivation quality.-
dc.description.sponsorshipEuropean Commission [857793]; Kuwait Foundation for the Advancement of Sciences (KFAS) [CN18-15EE-01]-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights© 2021 Elsevier B.V. All rights reserved.-
dc.subject.otherPoly-Si; Passivating contacts; Tunneling transport; Pinhole transport;-
dc.subject.otherContact resistivity; Transfer length method-
dc.titleMechanisms of charge carrier transport in polycrystalline silicon passivating contacts-
dc.typeJournal Contribution-
dc.identifier.volume232-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notesGalleni, L (corresponding author), IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.-
dc.description.noteslaura.galleni@imec.be-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr111359-
dc.identifier.doi10.1016/j.solmat.2021.111359-
dc.identifier.isiWOS:000694783700005-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Galleni, L.; Firat, M.; Radhakrishnan, H. Sivaramakrishnan; Duerinckx, F.; Tous, L.; Poortmans, J.] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.-
local.description.affiliation[Galleni, L.] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy.-
local.description.affiliation[Firat, M.; Poortmans, J.] Katholieke Univ Leuven, Dept Elect Engn, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium.-
local.description.affiliation[Poortmans, J.] Hasselt Univ, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorGalleni, L.-
item.contributorFIRAT, Meric-
item.contributorRadhakrishnan, H. Sivaramakrishnan-
item.contributorDUERINCKX, Filip-
item.contributorTOUS, Loic-
item.contributorPOORTMANS, Jef-
item.accessRightsOpen Access-
item.validationecoom 2022-
item.fullcitationGalleni, L.; FIRAT, Meric; Radhakrishnan, H. Sivaramakrishnan; DUERINCKX, Filip; TOUS, Loic & POORTMANS, Jef (2021) Mechanisms of charge carrier transport in polycrystalline silicon passivating contacts. In: Solar energy materials and solar cells, 232 , (Art N° 111359).-
crisitem.journal.issn0927-0248-
crisitem.journal.eissn1879-3398-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0927024821004013-main.pdf
  Restricted Access
Published version5.71 MBAdobe PDFView/Open    Request a copy
MechanismsOfChargeCarrierTransport_reviewed.pdfPeer-reviewed author version852.29 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

14
checked on Apr 22, 2024

Page view(s)

18
checked on Sep 7, 2022

Download(s)

4
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.