Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36205
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMORALES HERNANDEZ, Alejandro-
dc.contributor.authorVAN NIEUWENHUYSE, Inneke-
dc.contributor.authorROJAS GONZALEZ, Sebastian-
dc.date.accessioned2021-12-15T11:15:22Z-
dc.date.available2021-12-15T11:15:22Z-
dc.date.issued2021-
dc.date.submitted2021-12-09T09:47:19Z-
dc.identifier.urihttp://hdl.handle.net/1942/36205-
dc.description.abstractHyperparameter optimization (HPO) is a necessary step to ensure the best possible performance of Machine Learning (ML) algorithms. Several methods have been developed to perform HPO; most of these are focused on optimizing one performance measure (usually an error-based measure), and the literature on such single-objective HPO problems is vast. Recently, though, algorithms have appeared which focus on optimizing multiple conflicting objectives simultaneously. This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms, distinguishing between metaheuristic-based algorithms, metamodel-based algorithms and approaches using a mixture of both. We also discuss the quality metrics used to compare multi-objective HPO procedures, and present future research directions.-
dc.language.isoen-
dc.subject.otherhyperparameter optimization-
dc.subject.othermulti-objective optimization-
dc.subject.othermetamodel-
dc.subject.othermeta-heuristic-
dc.subject.othermachine learning-
dc.titleA survey on multi-objective hyperparameter optimization algorithms for Machine Learning-
dc.typePreprint-
local.bibliographicCitation.jcatO-
local.type.refereedNon-Refereed-
local.type.specifiedPreprint-
dc.identifier.arxivhttps://arxiv.org/abs/2111.13755-
local.provider.typePdf-
local.uhasselt.uhpubyes-
item.fulltextWith Fulltext-
item.contributorMORALES HERNANDEZ, Alejandro-
item.contributorVAN NIEUWENHUYSE, Inneke-
item.contributorROJAS GONZALEZ, Sebastian-
item.fullcitationMORALES HERNANDEZ, Alejandro; VAN NIEUWENHUYSE, Inneke & ROJAS GONZALEZ, Sebastian (2021) A survey on multi-objective hyperparameter optimization algorithms for Machine Learning.-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Literature_review_AIR_Journal.pdfNon Peer-reviewed author version589.67 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.