Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36500
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMARTIN, Niels-
dc.contributor.authorVAN HOUDT, Greg-
dc.contributor.authorJANSSENSWILLEN, Gert-
dc.date.accessioned2022-01-17T11:11:47Z-
dc.date.available2022-01-17T11:11:47Z-
dc.date.issued2022-
dc.date.submitted2022-01-10T13:39:47Z-
dc.identifier.citationExpert systems with applications, 191 (Art N° 116274)-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://hdl.handle.net/1942/36500-
dc.description.abstractProcess mining can provide valuable insights in business processes using an event log containing process execution data. Despite the significant potential of process mining to support the analysis and improvement of processes, the reliability of process mining outcomes depends on the quality of the event log. Real-life logs typically suffer from various data quality issues. Consequently, thorough event log quality assessment is required before applying process mining algorithms. This paper introduces DaQAPO, the first R-package which supports flexible and fine-grained event log quality assessment. It provides a rich set of tests to identify a wide range of event log quality issues, while having sufficient flexibility to allow the detection of context-specific quality issues.-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.rights2021 Elsevier Ltd. All rights reserved.-
dc.subject.otherProcess mining-
dc.subject.otherEvent log quality assessment-
dc.subject.otherEvent log quality-
dc.subject.otherData quality-
dc.subject.otherEvent log-
dc.subject.otherR-
dc.titleDaQAPO: Supporting flexible and fine-grained event log quality assessment-
dc.typeJournal Contribution-
dc.identifier.volume191-
local.format.pages7-
local.bibliographicCitation.jcatA1-
local.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr116274-
dc.identifier.doi10.1016/j.eswa.2021.116274-
dc.identifier.isi000744171700001-
dc.identifier.eissn1873-6793-
local.provider.typeCrossRef-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.contributorMARTIN, Niels-
item.contributorVAN HOUDT, Greg-
item.contributorJANSSENSWILLEN, Gert-
item.fullcitationMARTIN, Niels; VAN HOUDT, Greg & JANSSENSWILLEN, Gert (2022) DaQAPO: Supporting flexible and fine-grained event log quality assessment. In: Expert systems with applications, 191 (Art N° 116274).-
item.accessRightsOpen Access-
item.validationecoom 2023-
crisitem.journal.issn0957-4174-
crisitem.journal.eissn1873-6793-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0957417421015827-main.pdf
  Restricted Access
Published version1.86 MBAdobe PDFView/Open    Request a copy
Manuscript - Accepted version document server.pdfPeer-reviewed author version423.43 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.