Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/36500
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MARTIN, Niels | - |
dc.contributor.author | VAN HOUDT, Greg | - |
dc.contributor.author | JANSSENSWILLEN, Gert | - |
dc.date.accessioned | 2022-01-17T11:11:47Z | - |
dc.date.available | 2022-01-17T11:11:47Z | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2022-01-10T13:39:47Z | - |
dc.identifier.citation | Expert systems with applications, 191 (Art N° 116274) | - |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | http://hdl.handle.net/1942/36500 | - |
dc.description.abstract | Process mining can provide valuable insights in business processes using an event log containing process execution data. Despite the significant potential of process mining to support the analysis and improvement of processes, the reliability of process mining outcomes depends on the quality of the event log. Real-life logs typically suffer from various data quality issues. Consequently, thorough event log quality assessment is required before applying process mining algorithms. This paper introduces DaQAPO, the first R-package which supports flexible and fine-grained event log quality assessment. It provides a rich set of tests to identify a wide range of event log quality issues, while having sufficient flexibility to allow the detection of context-specific quality issues. | - |
dc.language.iso | en | - |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | - |
dc.rights | 2021 Elsevier Ltd. All rights reserved. | - |
dc.subject.other | Process mining | - |
dc.subject.other | Event log quality assessment | - |
dc.subject.other | Event log quality | - |
dc.subject.other | Data quality | - |
dc.subject.other | Event log | - |
dc.subject.other | R | - |
dc.title | DaQAPO: Supporting flexible and fine-grained event log quality assessment | - |
dc.type | Journal Contribution | - |
dc.identifier.volume | 191 | - |
local.format.pages | 7 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 116274 | - |
dc.identifier.doi | 10.1016/j.eswa.2021.116274 | - |
dc.identifier.isi | 000744171700001 | - |
dc.identifier.eissn | 1873-6793 | - |
local.provider.type | CrossRef | - |
local.uhasselt.uhpub | yes | - |
local.uhasselt.international | no | - |
item.fulltext | With Fulltext | - |
item.contributor | MARTIN, Niels | - |
item.contributor | VAN HOUDT, Greg | - |
item.contributor | JANSSENSWILLEN, Gert | - |
item.fullcitation | MARTIN, Niels; VAN HOUDT, Greg & JANSSENSWILLEN, Gert (2022) DaQAPO: Supporting flexible and fine-grained event log quality assessment. In: Expert systems with applications, 191 (Art N° 116274). | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2023 | - |
crisitem.journal.issn | 0957-4174 | - |
crisitem.journal.eissn | 1873-6793 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0957417421015827-main.pdf Restricted Access | Published version | 1.86 MB | Adobe PDF | View/Open Request a copy |
Manuscript - Accepted version document server.pdf | Peer-reviewed author version | 423.43 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.