Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36612
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoka, Nasrulloh-
dc.contributor.authorCouckuyt, Ivo-
dc.contributor.authorGarbuglia, Federico-
dc.contributor.authorSpina, Domenico-
dc.contributor.authorVAN NIEUWENHUYSE, Inneke-
dc.contributor.authorDhaene , Tom-
dc.date.accessioned2022-02-07T10:15:44Z-
dc.date.available2022-02-07T10:15:44Z-
dc.date.issued2023-
dc.date.submitted2022-02-03T19:48:37Z-
dc.identifier.citationEngineering With Computers, 9 , p. 1923 - 1933-
dc.identifier.urihttp://hdl.handle.net/1942/36612-
dc.description.abstractMulti-objective optimization of complex engineering systems is a challenging problem. The design goals can exhibit dynamic and nonlinear behaviour with respect to the system's parameters. Additionally, modern engineering is driven by simulation-based design which can be computationally expensive due to the complexity of the system under study. Bayesian optimization (BO) is a popular technique to tackle this kind of problem. In multi-objective BO, a data-driven surrogate model is created for each design objective. However, not all of the objectives may be expensive to compute. We develop an approach that can deal with a mix of expensive and cheap-to-evaluate objective functions. As a result, the proposed technique offers lower complexity than standard multi-objective BO methods and performs significantly better when the cheap objective function is difficult to approximate. In particular, we extend the popular hypervolume-based Expected Improvement (EI) and Probability of Improvement (POI) in bi-objective settings. The proposed methods are validated on multiple benchmark functions and two real-world engineering design optimization problems, showing that it performs better than its non-cheap counterparts. Furthermore, it performs competitively or better compared to other optimization methods.-
dc.description.sponsorshipThis work has been supported by the Flemish Government under the ”Onderzoeksprogramma Artifciële Intelligentie (AI) Vlaanderen” and the ”Fonds Wetenschappelijk Onderzoek (FWO)” programmes.-
dc.language.isoen-
dc.publisherSPRINGER-
dc.rightsThe Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022-
dc.subject.otherMulti-objective optimization-
dc.subject.otherBayesian optimization-
dc.subject.otherHypervolume-
dc.subject.otherGaussian process-
dc.titleBi-objective Bayesian optimization of engineering problems with cheap and expensive cost functions-
dc.typeJournal Contribution-
dc.identifier.epage1933-
dc.identifier.spage1923-
dc.identifier.volume39-
local.format.pages11-
local.bibliographicCitation.jcatA1-
dc.description.notesLoka, N (corresponding author), Ghent Univ Imec, Dept Informat Technol INTEC, IDLab, iGent, Techno Pk Zwijnaarde 126, B-9052 Ghent, Belgium.-
dc.description.notesnasrulloh.loka@ugent.be-
local.publisher.placeONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1007/s00366-021-01573-7-
dc.identifier.isiWOS:000746293500001-
local.provider.typewosris-
local.description.affiliation[Loka, Nasrulloh; Couckuyt, Ivo; Garbuglia, Federico; Spina, Domenico; Dhaene, Tom] Ghent Univ Imec, Dept Informat Technol INTEC, IDLab, iGent, Techno Pk Zwijnaarde 126, B-9052 Ghent, Belgium.-
local.description.affiliation[Van Nieuwenhuyse, Inneke] Hasselt Univ, Res Grp Logist, Agoralaan Gebouw D, B-3590 Limburg, Belgium.-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.fullcitationLoka, Nasrulloh; Couckuyt, Ivo; Garbuglia, Federico; Spina, Domenico; VAN NIEUWENHUYSE, Inneke & Dhaene , Tom (2023) Bi-objective Bayesian optimization of engineering problems with cheap and expensive cost functions. In: Engineering With Computers, 9 , p. 1923 - 1933.-
item.validationecoom 2023-
item.accessRightsOpen Access-
item.contributorLoka, Nasrulloh-
item.contributorCouckuyt, Ivo-
item.contributorGarbuglia, Federico-
item.contributorSpina, Domenico-
item.contributorVAN NIEUWENHUYSE, Inneke-
item.contributorDhaene , Tom-
crisitem.journal.issn0177-0667-
crisitem.journal.eissn1435-5663-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Bi-objective Bayesian optimization of engineering problems with cheap and expensive cost functions.pdf
  Restricted Access
Published version1.8 MBAdobe PDFView/Open    Request a copy
Cheap_Expensive_BO.pdfPeer-reviewed author version926 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

17
checked on Oct 6, 2025

WEB OF SCIENCETM
Citations

17
checked on Oct 9, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.