Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36649
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLUNOWA, Stephan-
dc.contributor.authorMascini, Arjen-
dc.contributor.authorBRINGEDAL, Carina-
dc.contributor.authorBultreys, Tom-
dc.contributor.authorCnudde, Veerle-
dc.contributor.authorPOP, Sorin-
dc.date.accessioned2022-02-16T08:53:13Z-
dc.date.available2022-02-16T08:53:13Z-
dc.date.issued2022-
dc.date.submitted2022-02-11T17:35:55Z-
dc.identifier.citationLANGMUIR, 38 (5) , p. 1680 -1688-
dc.identifier.issn0743-7463-
dc.identifier.urihttp://hdl.handle.net/1942/36649-
dc.description.abstractThe mathematical models for the capillary-driven flow of fluids in tubes typically assume a static contact angle at the fluid−air contact line on the tube walls. However, the dynamic evolution of the fluid−air interface is an important feature during capillary rise. Furthermore, inertial effects are relevant at early times and may lead to oscillations. To incorporate and quantify the different effects, a fundamental description of the physical processes within the tube is used to derive an upscaled model of capillary-driven flow in circular cylindrical tubes. The upscaled model extends the classical Lucas−Washburn model by incorporating a dynamic contact angle and slip. It is then further extended to account for inertial effects. Finally, the solutions of the different models are compared to experimental data. In contrast to the Lucas−Washburn model, the models with dynamic contact angle match well the experimental data, both the rise height and the contact angle, even at early times. The models have a free parameter through the dynamic contact angle description, which is fitted using the experimental data. The findings here suggest that this parameter depends only on the properties of the fluid but is independent of geometrical features, such as the tube radius. Therefore, the presented models can predict the capillary-driven flow in tubular systems upon knowledge of the underlying dynamic contact-angle relation.-
dc.description.sponsorshipGerman Research Foundation (DFG), Collaborative Research Center 1313 (grant 327154368) and Germany’s Excellence Strategy grant EXC 2075-390740016 Hasselt University (project number BOF17NI01) Research Foundation Flanders (FWO), grants G051418N, G0G1316N, and 12X0919N-
dc.language.isoen-
dc.publisher-
dc.titleDynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes-
dc.typeJournal Contribution-
dc.identifier.epage1688-
dc.identifier.issue5-
dc.identifier.spage1680-
dc.identifier.volume38-
local.bibliographicCitation.jcatA1-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acs.langmuir.1c02680-
dc.identifier.isi000763586100004-
dc.identifier.eissn****-****-
local.provider.typePdf-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.fullcitationLUNOWA, Stephan; Mascini, Arjen; BRINGEDAL, Carina; Bultreys, Tom; Cnudde, Veerle & POP, Sorin (2022) Dynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes. In: LANGMUIR, 38 (5) , p. 1680 -1688.-
item.contributorLUNOWA, Stephan-
item.contributorMascini, Arjen-
item.contributorBRINGEDAL, Carina-
item.contributorBultreys, Tom-
item.contributorCnudde, Veerle-
item.contributorPOP, Sorin-
item.validationecoom 2023-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn0743-7463-
crisitem.journal.eissn1520-5827-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Paper-CapillaryRise.pdfPeer-reviewed author version662.71 kBAdobe PDFView/Open
SupportingInformation.pdf
  Restricted Access
Supplementary material711.96 kBAdobe PDFView/Open    Request a copy
Paper.pdf
  Restricted Access
Published version1.38 MBAdobe PDFView/Open    Request a copy
Show simple item record

WEB OF SCIENCETM
Citations

7
checked on Sep 26, 2024

Page view(s)

68
checked on Sep 6, 2022

Download(s)

6
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.