Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37334
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRayner, J. C. W.-
dc.contributor.authorRippon, Paul-
dc.contributor.authorSuesse, Thomas-
dc.contributor.authorTHAS, Olivier-
dc.date.accessioned2022-05-30T08:22:19Z-
dc.date.available2022-05-30T08:22:19Z-
dc.date.issued2022-
dc.date.submitted2022-05-10T11:15:54Z-
dc.identifier.citationAustralian & New Zealand journal of statistics, 64 (1) , p. 67 -85-
dc.identifier.urihttp://hdl.handle.net/1942/37334-
dc.description.abstractWe focus on regression models that consist of (i) a model for the conditional mean of the outcome and (ii) a distributional assumption about the distribution of the outcome, both conditional on the regressors. Generalised linear models form a well-known example. The choice of the outcome distribution is often motivated by prior or background knowledge of the researcher, or it is simply chosen for convenience. We propose smooth goodness of fit tests for testing the distributional assumption in regression models. The tests arise from embedding the regression model in a smooth family of alternatives, and constructing appropriate score tests that correctly account for nuisance parameter estimation. The tests are customised, focussed and comprehensive. We present several examples to illustrate the wide applicability of our method. A small simulation study demonstrates that our tests have power to detect important deviations from the hypothesised model.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2022 Statistical Society of Australia-
dc.subject.otherGLM-
dc.subject.otherGLM-
dc.subject.othermodel diagnostics-
dc.subject.othermodel diagnostics-
dc.subject.otherPoisson regression-
dc.subject.otherPoisson regression-
dc.subject.otherscore test-
dc.subject.otherscore test-
dc.subject.otherZIP regression-
dc.subject.otherZIP regression-
dc.titleSmooth tests of goodness of fit for the distributional assumption of regression models-
dc.typeJournal Contribution-
dc.identifier.epage85-
dc.identifier.issue1-
dc.identifier.spage67-
dc.identifier.volume64-
local.format.pages19-
local.bibliographicCitation.jcatA1-
dc.description.notesThas, O (corresponding author), Univ Wollongong, Natl Inst Appl Stat Res Australia NIASRA, Wollongong, NSW 2522, Australia.; Thas, O (corresponding author), Hasselt Univ, Data Sci Inst, I BioStat, B-3500 Diepenbeek, Belgium.; Thas, O (corresponding author), Univ Ghent, Dept Appl Math Comp Sci & Stat, B-9000 Ghent, Belgium.-
dc.description.notesolivier.thas@uhasselt.be-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1111/anzs.12361-
dc.identifier.isiWOS:000783218800001-
local.provider.typewosris-
local.description.affiliation[Rayner, J. C. W.] Univ Newcastle, Ctr Comp Assisted Res Math & Its Applicat, Callaghan, NSW 2308, Australia.-
local.description.affiliation[Rayner, J. C. W.; Suesse, Thomas; Thas, Olivier] Univ Wollongong, Natl Inst Appl Stat Res Australia NIASRA, Wollongong, NSW 2522, Australia.-
local.description.affiliation[Rippon, Paul] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia.-
local.description.affiliation[Thas, Olivier] Hasselt Univ, Data Sci Inst, I BioStat, B-3500 Diepenbeek, Belgium.-
local.description.affiliation[Thas, Olivier] Univ Ghent, Dept Appl Math Comp Sci & Stat, B-9000 Ghent, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorRayner, J. C. W.-
item.contributorRippon, Paul-
item.contributorSuesse, Thomas-
item.contributorTHAS, Olivier-
item.fullcitationRayner, J. C. W.; Rippon, Paul; Suesse, Thomas & THAS, Olivier (2022) Smooth tests of goodness of fit for the distributional assumption of regression models. In: Australian & New Zealand journal of statistics, 64 (1) , p. 67 -85.-
item.accessRightsOpen Access-
item.validationecoom 2023-
crisitem.journal.issn1369-1473-
crisitem.journal.eissn1467-842X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Smooth tests of goodness of fit for the distributional assumption of regression models.pdf
  Restricted Access
Published version862.2 kBAdobe PDFView/Open    Request a copy
Smooth_GLM_R2 (1).pdfPeer-reviewed author version403.54 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.