Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37555
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerceg, Sina-
dc.contributor.authorKaaya, Ismail-
dc.contributor.authorAscencio-Vasquez, Julian-
dc.contributor.authorFischer, Marie-
dc.contributor.authorWeiss, Karl-Anders-
dc.contributor.authorSchebek, Liselotte-
dc.date.accessioned2022-06-20T13:00:01Z-
dc.date.available2022-06-20T13:00:01Z-
dc.date.issued2022-
dc.date.submitted2022-06-09T12:24:13Z-
dc.identifier.citationSustainability, 14 (10) (Art N° 5843)-
dc.identifier.urihttp://hdl.handle.net/1942/37555-
dc.description.abstractThe environmental footprint of photovoltaic electricity is usually assessed using nominated power or life cycle energy output. If performance degradation is considered, a linear reduction in lifetime energy output is assumed. However, research has shown that the decrease in energy output over time does not necessarily follow a linear degradation pattern but can vary at different points in the module's lifetime. Further, photovoltaic modules follow different degradation patterns in different climate zones. In this study, we address the influence of different degradation aspects on the greenhouse gas (GHG) emissions of PV electricity. Firstly, we apply different non-linear degradation scenarios to evaluate the GHG emissions and show that the differences in GHG emissions in comparison to a linear degradation can be up to 6.0%. Secondly, we use the ERA5 dataset generated by the ECMWF to calculate location-dependent degradation rates and apply them to estimate the location-specific GHG emissions. Due to the reduction in lifetime energy output, there is a direct correlation between the calculated degradation rate and GHG emissions. Thirdly, we assess the impact of climate change on degradation rates and on the respective GHG emissions of photovoltaic electricity using different climate change scenarios. In a best-case scenario, the GHG emissions are estimated to increase by around 5% until the year 2100 and by around 105% by 2100 for a worst-case scenario.-
dc.description.sponsorshipThis research received no external funding. The authors would like to thank the following organizations: European Centre for Medium-Range Weather Forecasts ECMWF, Deutscher Wetterdienst DWD, Coupled Model Intercomparison Project Phase 6 CMIP6, Earth System Grid Federation ESGF, and IPSL Climate Modelling Centre for providing valuable climate datasets.-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).-
dc.subject.otherLCA-
dc.subject.otherGHG-
dc.subject.otherphotovoltaic-
dc.subject.otherdegradation-
dc.subject.otherERA5-
dc.subject.otherclimate change-
dc.titleThe Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis-
dc.typeJournal Contribution-
dc.identifier.issue10-
dc.identifier.volume14-
local.format.pages15-
local.bibliographicCitation.jcatA1-
dc.description.notesHerceg, S (corresponding author), Fraunhofer Inst Solar Energy Syst ISE, D-79112 Freiburg, Germany.; Herceg, S (corresponding author), Tech Univ Darmstadt, Inst IWAR, Mat Flow Management & Resource Econ, D-64287 Darmstadt, Germany.-
dc.description.notessina.herceg@ise.fraunhofer.de; ismail.kaaya@imec.be;-
dc.description.notesjulian.ascencio@envision-digital.com; marie.fischer@ise.fraunhofer.de;-
dc.description.noteskarl-anders.weiss@ise.fraunhofer.de; l.schebek@iwar.tu-darmstadt.de-
local.publisher.placeST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr5843-
local.classdsPublValOverrule/internal_author_not_expected-
dc.identifier.doi10.3390/su14105843-
dc.identifier.isiWOS:000802567900001-
dc.identifier.eissn2071-1050-
local.provider.typewosris-
local.description.affiliation[Herceg, Sina; Fischer, Marie; Weiss, Karl-Anders] Fraunhofer Inst Solar Energy Syst ISE, D-79112 Freiburg, Germany.-
local.description.affiliation[Herceg, Sina; Schebek, Liselotte] Tech Univ Darmstadt, Inst IWAR, Mat Flow Management & Resource Econ, D-64287 Darmstadt, Germany.-
local.description.affiliation[Kaaya, Ismail] Imo Imomec, EnergyVille, Thor Pk, B-3001 Genk, Belgium.-
local.description.affiliation[Kaaya, Ismail] Imo Imomec, IMEC, Thor Pk, B-3001 Genk, Belgium.-
local.description.affiliation[Kaaya, Ismail] Hasselt Univ, Imo Imomec, B-3500 Hasselt, Belgium.-
local.description.affiliation[Ascencio-Vasquez, Julian] Envis Digital, Redwood City, CA 94065 USA.-
local.description.affiliation[Ascencio-Vasquez, Julian] ASVA Consulting, Santa Cruz De Tenerife 38650, Spain.-
local.uhasselt.internationalyes-
item.validationecoom 2023-
item.contributorHerceg, Sina-
item.contributorKaaya, Ismail-
item.contributorAscencio-Vasquez, Julian-
item.contributorFischer, Marie-
item.contributorWeiss, Karl-Anders-
item.contributorSchebek, Liselotte-
item.fullcitationHerceg, Sina; Kaaya, Ismail; Ascencio-Vasquez, Julian; Fischer, Marie; Weiss, Karl-Anders & Schebek, Liselotte (2022) The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis. In: Sustainability, 14 (10) (Art N° 5843).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.eissn2071-1050-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.