Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/37897
Full metadata record
DC FieldValueLanguage
dc.contributor.authorREZAEIFAR, Behzad-
dc.contributor.authorWolfs, Cecile J. A.-
dc.contributor.authorLieuwes, Natasja G.-
dc.contributor.authorBiemans, Rianne-
dc.contributor.authorRENIERS, Brigitte-
dc.contributor.authorDubois, Ludwig J.-
dc.contributor.authorVerhaegen , Frank-
dc.date.accessioned2022-08-18T12:08:53Z-
dc.date.available2022-08-18T12:08:53Z-
dc.date.issued2022-
dc.date.submitted2022-08-16T11:26:58Z-
dc.identifier.citationPhysics in medicine and biology (Print), 67 (14) (Art N° 144003)-
dc.identifier.urihttp://hdl.handle.net/1942/37897-
dc.description.abstractObjective. Bioluminescence imaging (BLI) is a valuable tool for non-invasive monitoring of glioblastoma multiforme (GBM) tumor-bearing small animals without incurring x-ray radiation burden. However, the use of this imaging modality is limited due to photon scattering and lack of spatial information. Attempts at reconstructing bioluminescence tomography (BLT) using mathematical models of light propagation show limited progress. Approach. This paper employed a different approach by using a deep convolutional neural network (CNN) to predict the tumor's center of mass (CoM). Transfer-learning with a sizeable artificial database is employed to facilitate the training process for, the much smaller, target database including Monte Carlo (MC) simulations of real orthotopic glioblastoma models. Predicted CoM was then used to estimate a BLI-based planning target volume (bPTV), by using the CoM as the center of a sphere, encompassing the tumor. The volume of the encompassing target sphere was estimated based on the total number of photons reaching the skin surface. Main results. Results show sub-millimeter accuracy for CoM prediction with a median error of 0.59 mm. The proposed method also provides promising performance for BLI-based tumor targeting with on average 94% of the tumor inside the bPTV while keeping the average healthy tissue coverage below 10%. Significance. This work introduced a framework for developing and using a CNN for targeted radiation studies for GBM based on BLI. The framework will enable biologists to use BLI as their main image-guidance tool to target GBM tumors in rat models, avoiding delivery of high x-ray imaging dose to the animals.-
dc.description.sponsorshipThe authors would like to thank Dr Brent van der Heyden for fruitful discussion. This work was partially supported by special research fund for double doctorate degree projects in the framework of the cooperation between Hasselt university and Maastricht UMC + (Grant No. BOF17DOCMA13).-
dc.language.isoen-
dc.publisherIOP Publishing Ltd-
dc.rights2022 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd. Open access-
dc.subject.othersmall animal precision radiotherapy-
dc.subject.otherbioluminescence tomography reconstruction-
dc.subject.otherdeep learning-
dc.subject.other3D convolutional neural network-
dc.subject.othercenter of mass-
dc.subject.othertransfer learning-
dc.subject.otherMonte Carlo simulation-
dc.titleA deep learning and Monte Carlo based framework for bioluminescence imaging center of mass-guided glioblastoma targeting-
dc.typeJournal Contribution-
dc.identifier.issue14-
dc.identifier.volume67-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesVerhaegen, F (corresponding author), Maastricht Univ, Med Ctr, GROW Sch Oncol & Reprod, Dept Radiat Oncol Maastro, Maastricht, Netherlands.-
dc.description.notesfrank.verhaegen@maastro.nl-
local.publisher.placeTEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr144003-
dc.identifier.doi10.1088/1361-6560/ac79f8-
dc.identifier.pmid35714611-
dc.identifier.isi000825719100001-
dc.contributor.orcidverhaegen, frank/0000-0001-8470-386X; Dubois,-
dc.contributor.orcidLudwig/0000-0002-8887-4137; Rezaeifar, Behzad/0000-0002-2125-1154;-
dc.contributor.orcidWolfs, Cecile/0000-0001-6428-2762; RENIERS, Brigitte/0000-0001-7084-4696-
local.provider.typewosris-
local.description.affiliation[Rezaeifar, Behzad; Wolfs, Cecile J. A.; Verhaegen, Frank] Maastricht Univ, Med Ctr, GROW Sch Oncol & Reprod, Dept Radiat Oncol Maastro, Maastricht, Netherlands.-
local.description.affiliation[Rezaeifar, Behzad; Reniers, Brigitte] Hasselt Univ, Ctr Environm Sci, Res Grp NuTeC, Diepenbeek, Belgium.-
local.description.affiliation[Lieuwes, Natasja G.; Biemans, Rianne; Dubois, Ludwig J.] Maastricht Univ, GROW Sch Oncol & Reprod, Dept Precis Med, M Lab, Maastricht, Netherlands.-
local.uhasselt.internationalyes-
item.fullcitationREZAEIFAR, Behzad; Wolfs, Cecile J. A.; Lieuwes, Natasja G.; Biemans, Rianne; RENIERS, Brigitte; Dubois, Ludwig J. & Verhaegen , Frank (2022) A deep learning and Monte Carlo based framework for bioluminescence imaging center of mass-guided glioblastoma targeting. In: Physics in medicine and biology (Print), 67 (14) (Art N° 144003).-
item.validationecoom 2023-
item.contributorREZAEIFAR, Behzad-
item.contributorWolfs, Cecile J. A.-
item.contributorLieuwes, Natasja G.-
item.contributorBiemans, Rianne-
item.contributorRENIERS, Brigitte-
item.contributorDubois, Ludwig J.-
item.contributorVerhaegen , Frank-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn0031-9155-
crisitem.journal.eissn1361-6560-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

7
checked on May 8, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.