Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/39170
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGAHN, Markus-
dc.contributor.authorPOP, Sorin-
dc.date.accessioned2023-01-05T15:11:45Z-
dc.date.available2023-01-05T15:11:45Z-
dc.date.issued2023-
dc.date.submitted2023-01-03T12:15:28Z-
dc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS, 343 , p. 90 -151-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/39170-
dc.description.abstractIn this work we present the homogenization of a reaction-diffusion model that includes an evolving microstructure. Such type of problems model, for example, mineral dissolution and precipitation in a porous medium. In the initial state, the microscopic geometry is a periodically perforated domain, each perforation being a spherical solid grains. A small parameter ϵ is characterizing both the distance between two neighboring grains, and the radii of the grains. For each grain, the radius depends on the unknown (the solute concentration) at its surface. Therefore, the radii of the grains change in time and are model unknowns, so the model involves free boundaries at the micro scale. In a first step, we transform the evolving micro domain to a fixed, periodically domain. Using the Rothe-method, we prove the existence of a weak solution and obtain a priori estimates that are uniform with respect to ϵ. Finally, letting ϵ to 0, we derive a macroscopic model, the solution of which approximates the micro-scale solution. For this, we use the method of two-scale convergence, and obtain strong compactness results enabling to pass to the limit in the nonlinear terms.-
dc.description.sponsorshipResearch Foundation-Flanders (FWO), Belgium, Odysseus programme (the project G0G1316N). SCIDATOS (Scientific Computing for Improved Detection and Therapy of Sepsis), Klaus Tschira Foundation, Germany (Grant Number 00.0277.2015)-
dc.language.isoen-
dc.publisher-
dc.rights2022 Elsevier Inc. All rights reserved.-
dc.subject.otherHomogenization-
dc.subject.otherHomogenization-
dc.subject.otherEvolving micro-domain-
dc.subject.otherEvolving micro-domain-
dc.subject.otherFree boundaries-
dc.subject.otherFree boundaries-
dc.subject.otherReaction-diffusion equation-
dc.subject.otherReaction-diffusion equation-
dc.titleHomogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale-
dc.typeJournal Contribution-
dc.identifier.epage151-
dc.identifier.spage90-
dc.identifier.volume343-
local.bibliographicCitation.jcatA1-
local.publisher.place525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jde.2022.10.006-
dc.identifier.isi001009493100003-
dc.identifier.eissn1090-2732-
local.provider.typeCrossRef-
local.uhasselt.internationalyes-
item.validationecoom 2024-
item.contributorGAHN, Markus-
item.contributorPOP, Sorin-
item.fullcitationGAHN, Markus & POP, Sorin (2023) Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 343 , p. 90 -151.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0022039622005757-main.pdf
  Restricted Access
Published version716.46 kBAdobe PDFView/Open    Request a copy
2205.03077.pdfNon Peer-reviewed author version498.7 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.