Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/39170
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | GAHN, Markus | - |
dc.contributor.author | POP, Sorin | - |
dc.date.accessioned | 2023-01-05T15:11:45Z | - |
dc.date.available | 2023-01-05T15:11:45Z | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-01-03T12:15:28Z | - |
dc.identifier.citation | JOURNAL OF DIFFERENTIAL EQUATIONS, 343 , p. 90 -151 | - |
dc.identifier.issn | 0022-0396 | - |
dc.identifier.uri | http://hdl.handle.net/1942/39170 | - |
dc.description.abstract | In this work we present the homogenization of a reaction-diffusion model that includes an evolving microstructure. Such type of problems model, for example, mineral dissolution and precipitation in a porous medium. In the initial state, the microscopic geometry is a periodically perforated domain, each perforation being a spherical solid grains. A small parameter ϵ is characterizing both the distance between two neighboring grains, and the radii of the grains. For each grain, the radius depends on the unknown (the solute concentration) at its surface. Therefore, the radii of the grains change in time and are model unknowns, so the model involves free boundaries at the micro scale. In a first step, we transform the evolving micro domain to a fixed, periodically domain. Using the Rothe-method, we prove the existence of a weak solution and obtain a priori estimates that are uniform with respect to ϵ. Finally, letting ϵ to 0, we derive a macroscopic model, the solution of which approximates the micro-scale solution. For this, we use the method of two-scale convergence, and obtain strong compactness results enabling to pass to the limit in the nonlinear terms. | - |
dc.description.sponsorship | Research Foundation-Flanders (FWO), Belgium, Odysseus programme (the project G0G1316N). SCIDATOS (Scientific Computing for Improved Detection and Therapy of Sepsis), Klaus Tschira Foundation, Germany (Grant Number 00.0277.2015) | - |
dc.language.iso | en | - |
dc.publisher | - | |
dc.rights | 2022 Elsevier Inc. All rights reserved. | - |
dc.subject.other | Homogenization | - |
dc.subject.other | Homogenization | - |
dc.subject.other | Evolving micro-domain | - |
dc.subject.other | Evolving micro-domain | - |
dc.subject.other | Free boundaries | - |
dc.subject.other | Free boundaries | - |
dc.subject.other | Reaction-diffusion equation | - |
dc.subject.other | Reaction-diffusion equation | - |
dc.title | Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 151 | - |
dc.identifier.spage | 90 | - |
dc.identifier.volume | 343 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1016/j.jde.2022.10.006 | - |
dc.identifier.isi | 001009493100003 | - |
dc.identifier.eissn | 1090-2732 | - |
local.provider.type | CrossRef | - |
local.uhasselt.international | yes | - |
item.validation | ecoom 2024 | - |
item.contributor | GAHN, Markus | - |
item.contributor | POP, Sorin | - |
item.fullcitation | GAHN, Markus & POP, Sorin (2023) Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 343 , p. 90 -151. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
crisitem.journal.issn | 0022-0396 | - |
crisitem.journal.eissn | 1090-2732 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0022039622005757-main.pdf Restricted Access | Published version | 716.46 kB | Adobe PDF | View/Open Request a copy |
2205.03077.pdf | Non Peer-reviewed author version | 498.7 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.