Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMICHIELS, Bart-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorBIJNENS, Luc-
dc.contributor.authorVANGENEUGDEN, Tony-
dc.contributor.authorTHIJS, Herbert-
dc.date.accessioned2004-10-26T07:27:15Z-
dc.date.available2004-10-26T07:27:15Z-
dc.date.issued2002-
dc.identifier.citationStatistics in Medicine, 21(8). p. 1023-1041-
dc.identifier.issn0277-6715-
dc.identifier.urihttp://hdl.handle.net/1942/392-
dc.description.abstractLongitudinally observed quality of life data with large amounts of drop-out are analysed. First we used the selection modelling framework, frequently used with incomplete studies. An alternative method consists of using pattern-mixture models. These are also straightforward to implement, but result in a different set of parameters for the measurement and drop-out mechanisms. Since selection models and pattern-mixture models are based upon different factorizations of the joint distribution of measurement and drop-out mechanisms, comparing both models concerning, for example, treatment effect, is a useful form of a sensitivity analysis.-
dc.description.sponsorshipWe gratefully acknowledge support from the FWO-Vlaanderen Research Project ‘Sensitivity analysis for incomplete and coarse data’. The Janssen Research Foundation kindly provided us with the data.-
dc.language.isoen-
dc.publisherJOHN WILEY-
dc.rightsCopyright (C) 2002 John Wiley & Sons, Ltd.-
dc.subjectClinical trials-
dc.subjectMissing data-
dc.subjectLongitudinal data-
dc.subject.otherdelta method; linear mixed model; missing data; repeated measures-
dc.titleSelection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout-
dc.typeJournal Contribution-
dc.identifier.epage1041-
dc.identifier.issue8-
dc.identifier.spage1023-
dc.identifier.volume21-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1002/sim.1064-
dc.identifier.isi000174753000001-
dc.identifier.urlhttps://lirias.kuleuven.be/bitstream/123456789/359934/3/93.pdf-
dc.identifier.urlhttp://www.vetstat.ugent.be/workshop/Nairobi2004/Bijnens/MichielsBijnens.pdf-
item.fulltextWith Fulltext-
item.contributorMICHIELS, Bart-
item.contributorMOLENBERGHS, Geert-
item.contributorBIJNENS, Luc-
item.contributorVANGENEUGDEN, Tony-
item.contributorTHIJS, Herbert-
item.fullcitationMICHIELS, Bart; MOLENBERGHS, Geert; BIJNENS, Luc; VANGENEUGDEN, Tony & THIJS, Herbert (2002) Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout. In: Statistics in Medicine, 21(8). p. 1023-1041.-
item.accessRightsRestricted Access-
item.validationecoom 2003-
crisitem.journal.issn0277-6715-
crisitem.journal.eissn1097-0258-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Michiels_et_al-2002-Statistics_in_Medicine.pdf
  Restricted Access
Published version159.44 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.