Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMICHIELS, Bart-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorBIJNENS, Luc-
dc.contributor.authorVANGENEUGDEN, Tony-
dc.contributor.authorTHIJS, Herbert-
dc.date.accessioned2004-10-26T07:27:15Z-
dc.date.available2004-10-26T07:27:15Z-
dc.date.issued2002-
dc.identifier.citationStatistics in Medicine, 21(8). p. 1023-1041-
dc.identifier.issn0277-6715-
dc.identifier.urihttp://hdl.handle.net/1942/392-
dc.description.abstractLongitudinally observed quality of life data with large amounts of drop-out are analysed. First we used the selection modelling framework, frequently used with incomplete studies. An alternative method consists of using pattern-mixture models. These are also straightforward to implement, but result in a different set of parameters for the measurement and drop-out mechanisms. Since selection models and pattern-mixture models are based upon different factorizations of the joint distribution of measurement and drop-out mechanisms, comparing both models concerning, for example, treatment effect, is a useful form of a sensitivity analysis.-
dc.description.sponsorshipWe gratefully acknowledge support from the FWO-Vlaanderen Research Project ‘Sensitivity analysis for incomplete and coarse data’. The Janssen Research Foundation kindly provided us with the data.-
dc.language.isoen-
dc.publisherJOHN WILEY-
dc.rightsCopyright (C) 2002 John Wiley & Sons, Ltd.-
dc.subjectClinical trials-
dc.subjectMissing data-
dc.subjectLongitudinal data-
dc.subject.otherdelta method; linear mixed model; missing data; repeated measures-
dc.titleSelection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout-
dc.typeJournal Contribution-
dc.identifier.epage1041-
dc.identifier.issue8-
dc.identifier.spage1023-
dc.identifier.volume21-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1002/sim.1064-
dc.identifier.isi000174753000001-
dc.identifier.urlhttps://lirias.kuleuven.be/bitstream/123456789/359934/3/93.pdf-
dc.identifier.urlhttp://www.vetstat.ugent.be/workshop/Nairobi2004/Bijnens/MichielsBijnens.pdf-
item.validationecoom 2003-
item.fulltextWith Fulltext-
item.contributorMICHIELS, Bart-
item.contributorMOLENBERGHS, Geert-
item.contributorBIJNENS, Luc-
item.contributorVANGENEUGDEN, Tony-
item.contributorTHIJS, Herbert-
item.fullcitationMICHIELS, Bart; MOLENBERGHS, Geert; BIJNENS, Luc; VANGENEUGDEN, Tony & THIJS, Herbert (2002) Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout. In: Statistics in Medicine, 21(8). p. 1023-1041.-
item.accessRightsRestricted Access-
crisitem.journal.issn0277-6715-
crisitem.journal.eissn1097-0258-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Michiels_et_al-2002-Statistics_in_Medicine.pdf
  Restricted Access
Published version159.44 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

58
checked on Dec 9, 2025

WEB OF SCIENCETM
Citations

42
checked on Dec 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.