Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/392
Title: Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout
Authors: MICHIELS, Bart 
MOLENBERGHS, Geert 
BIJNENS, Luc 
VANGENEUGDEN, Tony 
THIJS, Herbert 
Issue Date: 2002
Publisher: JOHN WILEY
Source: Statistics in Medicine, 21(8). p. 1023-1041
Abstract: Longitudinally observed quality of life data with large amounts of drop-out are analysed. First we used the selection modelling framework, frequently used with incomplete studies. An alternative method consists of using pattern-mixture models. These are also straightforward to implement, but result in a different set of parameters for the measurement and drop-out mechanisms. Since selection models and pattern-mixture models are based upon different factorizations of the joint distribution of measurement and drop-out mechanisms, comparing both models concerning, for example, treatment effect, is a useful form of a sensitivity analysis.
Keywords: delta method; linear mixed model; missing data; repeated measures
Document URI: http://hdl.handle.net/1942/392
Link to publication/dataset: https://lirias.kuleuven.be/bitstream/123456789/359934/3/93.pdf
http://www.vetstat.ugent.be/workshop/Nairobi2004/Bijnens/MichielsBijnens.pdf
ISSN: 0277-6715
e-ISSN: 1097-0258
DOI: 10.1002/sim.1064
ISI #: 000174753000001
Rights: Copyright (C) 2002 John Wiley & Sons, Ltd.
Category: A1
Type: Journal Contribution
Validations: ecoom 2003
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Michiels_et_al-2002-Statistics_in_Medicine.pdf
  Restricted Access
Published version159.44 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.