Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/39425
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bucchi, Marco | - |
dc.contributor.author | Grez, Alejandro | - |
dc.contributor.author | Quintana, Andrés | - |
dc.contributor.author | Riveros, Cristian | - |
dc.contributor.author | VANSUMMEREN, Stijn | - |
dc.date.accessioned | 2023-02-15T08:42:15Z | - |
dc.date.available | 2023-02-15T08:42:15Z | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2023-02-13T12:50:04Z | - |
dc.identifier.citation | Proceedings of the VLDB Endowment, 15 (9) , p. 1951 -1964 | - |
dc.identifier.issn | 2150-8097 | - |
dc.identifier.uri | http://hdl.handle.net/1942/39425 | - |
dc.description.abstract | Complex Event Recognition (CER) systems are a prominent technology for finding user-defined query patterns over large data streams in real time. CER query evaluation is known to be compu-tationally challenging, since it requires maintaining a set of partial matches, and this set quickly grows super-linearly in the number of processed events. We present CORE, a novel COmplex event Recognition Engine that focuses on the efficient evaluation of a large class of complex event queries, including time windows as well as the partition-by event correlation operator. This engine uses a novel automaton-based evaluation algorithm that circumvents the super-linear partial match problem: under data complexity, it takes constant time per input event to maintain a data structure that compactly represents the set of partial matches and, once a match is found, the query results may be enumerated from the data structure with output-linear delay. We experimentally compare CORE against state-of-the-art CER systems on real-world data. We show that (1) CORE's performance is stable with respect to both query and time window size, and (2) CORE outperforms the other systems by up to five orders of magnitude on different workloads. | - |
dc.language.iso | en | - |
dc.publisher | - | |
dc.subject.other | Complex Event Recognition | - |
dc.subject.other | Database querying | - |
dc.subject.other | Automata | - |
dc.title | CORE: a Complex Event Recognition Engine | - |
dc.type | Journal Contribution | - |
local.bibliographicCitation.conferencedate | Sept 5-9, 2022 | - |
local.bibliographicCitation.conferencename | International Conference on Very Large Data Bases | - |
local.bibliographicCitation.conferenceplace | Sydney, Australia | - |
dc.identifier.epage | 1964 | - |
dc.identifier.issue | 9 | - |
dc.identifier.spage | 1951 | - |
dc.identifier.volume | 15 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.14778/3538598.3538615 | - |
dc.identifier.isi | 000992384400018 | - |
dc.identifier.eissn | 2150-8097 | - |
local.provider.type | CrossRef | - |
local.dataset.url | https://github.com/CORE-cer | - |
local.uhasselt.international | yes | - |
item.fulltext | With Fulltext | - |
item.contributor | Bucchi, Marco | - |
item.contributor | Grez, Alejandro | - |
item.contributor | Quintana, Andrés | - |
item.contributor | Riveros, Cristian | - |
item.contributor | VANSUMMEREN, Stijn | - |
item.fullcitation | Bucchi, Marco; Grez, Alejandro; Quintana, Andrés; Riveros, Cristian & VANSUMMEREN, Stijn (2022) CORE: a Complex Event Recognition Engine. In: Proceedings of the VLDB Endowment, 15 (9) , p. 1951 -1964. | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2024 | - |
crisitem.journal.issn | 2150-8097 | - |
crisitem.journal.eissn | 2150-8097 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
p2321-vansummeren.pdf | Peer-reviewed author version | 766.69 kB | Adobe PDF | View/Open |
3538598.3538615.pdf Restricted Access | Published version | 1.19 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.