Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/40373
Title: Physical confinement and cell proximity increase cell migration rates and invasiveness: A mathematical model of cancer cell invasion through flexible channels
Authors: PENG, Qiyao 
VERMOLEN, Fred 
Weihs, Daphne
Issue Date: 2023
Publisher: ELSEVIER
Source: Journal of the Mechanical Behavior of Biomedical Materials, 142 (Art N° 105843)
Abstract: Cancer cell migration between different body parts is the driving force behind cancer metastasis, which is the main cause of mortality of patients. Migration of cancer cells often proceeds by penetration through narrow cavities in locally stiff, yet flexible tissues. In our previous work, we developed a model for cell geometry evolution during invasion, which we extend here to investigate whether leader and follower (cancer) cells that only interact mechanically can benefit from sequential transmigration through narrow micro-channels and cavities. We consider two cases of cells sequentially migrating through a flexible channel: leader and follower cells being closely adjacent or distant. Using Wilcoxon's signed-rank test on the data collected from Monte Carlo simulations, we conclude that the modelled transmigration speed for the follower cell is significantly larger than for the leader cell when cells are distant, i.e. follower cells transmigrate after the leader has completed the crossing. Furthermore, it appears that there exists an optimum with respect to the width of the channel such that cell moves fastest. On the other hand, in the case of closely adjacent cells, effectively performing collective migration, the leader cell moves 12% faster since the follower cell pushes it. This work shows that mechanical interactions between cells can increase the net transmigration speed of cancer cells, resulting in increased invasiveness. In other words, interaction between cancer cells can accelerate metastatic invasion.
Notes: Peng, QY (corresponding author), Leiden Univ, Math Inst, Fac Sci, Neils Bohrweg 1, NL-2333 Leiden, Netherlands.
q.peng@math.leidenuniv.nl
Keywords: Cell invasion;Cancer metastasis;Morphoelasticity;Agent-based model;Flexible channel;Cell geometry;Collective migration
Document URI: http://hdl.handle.net/1942/40373
ISSN: 1751-6161
e-ISSN: 1878-0180
DOI: 10.1016/j.jmbbm.2023.105843
ISI #: 000989347200001
Rights: 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Show full item record

WEB OF SCIENCETM
Citations

1
checked on Apr 22, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.